Mechanical Properties of Suture Materials

Chapter

Abstract

An ideal suture should have high tensile strength, hold securely when knotted, handle easily, not break unexpectedly, be flexible when knotted, cause minimal tissue reaction, be resistant to infection, and biodegrade after satisfactory tissue healing. Suture materials can be absorbable or nonabsorbable, monofilament or braided, and made of a single or blend of materials. Adequate suture strength is required. The initial sutures were braided with excellent strength for open surgery. However arthroscopic and endoscopic techniques required more and suture breaking during knot tying lead to high-strength sutures containing ultrahigh molecular weight polyethylene.

References

  1. 1.
    Trail IA, Powell ES, Noble J. An evaluation of suture materials used in tendon surgery. J Hand Surg Br. 1989;14(4):422–7.PubMedCrossRefGoogle Scholar
  2. 2.
    Rodeheaver GT, Powell TA, Thacker JG, Edlich RF. Mechanical performance of monofilament synthetic absorbable sutures. Am J Surg. 1987;154(5):544–7.PubMedCrossRefGoogle Scholar
  3. 3.
    Ilahi OA, Younas SA, Alexander J, Noble PC. Cyclic testing of arthroscopic knot security. Arthroscopy. 2004;20(1):62–8.PubMedCrossRefGoogle Scholar
  4. 4.
    Bresnahan KA, Howell JM, Wizorek J. Comparison of tensile strength of cyanoacrylate tissue adhesive closure of lacerations versus suture closure. Ann Emerg Med. 1995;26(5):575–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Garcia Paez JM, Carrera San Martin A, Garcia Sestafe JV, et al. Resistance and elasticity of the suture threads employed in cardiac bioprostheses. Biomaterials. 1994;15(12):981–4.PubMedCrossRefGoogle Scholar
  6. 6.
    Schiller TD, Stone EA, Gupta BS. In vitro loss of tensile strength and elasticity of five absorbable suture materials in sterile and infected canine urine. Vet Surg. 1993;22(3):208–12.PubMedCrossRefGoogle Scholar
  7. 7.
    Liang SX, Feng XJ, Yin LX, et al. Development of a new beta Ti alloy with low modulus and favorable plasticity for implant material. Mater Sci Eng C Mater Biol Appl. 2016;61:338–43.PubMedCrossRefGoogle Scholar
  8. 8.
    Kujala S, Pajala A, Kallioinen M, et al. Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon. Biomaterials. 2004;25(2):353–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Moneim MS, Firoozbakhsh K, Mustapha AA, Larsen K, Shahinpoor M. Flexor tendon repair using shape memory alloy suture: a biomechanical evaluation. Clin Orthop Relat Res. 2002;402:251–9.CrossRefGoogle Scholar
  10. 10.
    Ray JA, Doddi N, Regula D, Williams JA, Melveger A. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet. 1981;153(4):497–507.PubMedGoogle Scholar
  11. 11.
    Blomstedt B, Osterberg B. Fluid absorption and capillarity of suture materials. Acta Chir Scand. 1977;143(2):67–70.PubMedGoogle Scholar
  12. 12.
    Deranlot J, Maurel N, Diop A, et al. Abrasive properties of braided polyblend sutures in cuff tendon repair: an in vitro biomechanical study exploring regular and tape sutures. Arthroscopy. 2014;30(12):1569–73.PubMedCrossRefGoogle Scholar
  13. 13.
    Savage E, Hurren CJ, Slader S, et al. Bending and abrasion fatigue of common suture materials used in arthroscopic and open orthopedic surgery. J Orthop Res. 2013;31(1):132–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Kowalsky MS, Dellenbaugh SG, Erlichman DB, et al. Evaluation of suture abrasion against rotator cuff tendon and proximal humerus bone. Arthroscopy. 2008;24(3):329–34.PubMedCrossRefGoogle Scholar
  15. 15.
    Barber FA, Herbert MA, Beavis RC. Cyclic load and failure behavior of arthroscopic knots and high strength sutures. Arthroscopy. 2009;25(2):192–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Lo IK, Burkhart SS, Chan KC, Athanasiou K. Arthroscopic knots: determining the optimal balance of loop security and knot security. Arthroscopy. 2004;20(5):489–502.PubMedCrossRefGoogle Scholar
  17. 17.
    Barber FA, Herbert MA, Coons DA, Boothby MH. Sutures and suture anchors—update 2006. Arthroscopy. 2006;22(10):1063.e1–9.CrossRefGoogle Scholar
  18. 18.
    Abbi G, Espinoza L, Odell T, Mahar A, Pedowitz R. Evaluation of 5 knots and 2 suture materials for arthroscopic rotator cuff repair: very strong sutures can still slip. Arthroscopy. 2006;22(1):38–43.PubMedCrossRefGoogle Scholar
  19. 19.
    Ilahi OA, Younas SA, Ho DM, Noble PC. Security of knots tied with ethibond, fiberwire, orthocord, or ultrabraid. Am J Sports Med. 2008;36(12):2407–14.PubMedCrossRefGoogle Scholar
  20. 20.
    Mahar A, Odell T, Thomas W, Pedowitz R. A biomechanical analysis of a novel arthroscopic suture method compared to standard suture knots and materials for rotator cuff repair. Arthroscopy. 2007;23(11):1162–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Bisson LJ, Manohar LM. A biomechanical comparison of the pullout strength of No. 2 FiberWire suture and 2-mm FiberWire tape in bovine rotator cuff tendons. Arthroscopy. 2010;26(11):1463–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Gnandt RJ, Smith JL, Nguyen-Ta K, McDonald L, LeClere LE. High-tensile strength tape versus high-tensile strength suture: a biomechanical study. Arthroscopy. 2016;32(2):356–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Barber FA, Herbert MA, Richards DP. Sutures and suture anchors: update 2003. Arthroscopy. 2003;19(9):985–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Burkhart SS, Wirth MA, Simonick M, et al. Loop security as a determinant of tissue fixation security. Arthroscopy. 1998;14(7):773–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Bibbo C, Milia MJ, Gehrmann RM, Patel DV, Anderson RB. Strength and knot security of braided polyester and caprolactone/glycolide suture. Foot Ankle Int. 2004;25(10):712–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Burkhart SS, Wirth MA, Simonich M, et al. Knot security in simple sliding knots and its relationship to rotator cuff repair: how secure must the knot be? Arthroscopy. 2000;16(2):202–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Lo IK, Ochoa E Jr, Burkhart SS. A comparison of knot security and loop security in arthroscopic knots tied with newer high-strength suture materials. Arthroscopy. 2010;26(9 Suppl):S120–6.PubMedCrossRefGoogle Scholar
  28. 28.
    Livermore RW, Chong AC, Prohaska DJ, Cooke FW, Jones TL. Knot security, loop security, and elongation of braided polyblend sutures used for arthroscopic knots. Am J Orthop (Belle Mead NJ). 2010;39(12):569–76.Google Scholar
  29. 29.
    Mishra DK, Cannon WD Jr, Lucas DJ, Belzer JP. Elongation of arthroscopically tied knots. Am J Sports Med. 1997;25(1):113–7.PubMedCrossRefGoogle Scholar
  30. 30.
    Loutzenheiser TD, Harryman DT 2nd, Yung SW, France MP, Sidles JA. Optimizing arthroscopic knots. Arthroscopy. 1995;11(2):199–206.PubMedCrossRefGoogle Scholar
  31. 31.
    Swan KG Jr, Baldini T, McCarty EC. Arthroscopic suture material and knot type: an updated biomechanical analysis. Am J Sports Med. 2009;37(8):1578–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Wright PB, Budoff JE, Yeh ML, Kelm ZS, Luo ZP. Strength of damaged suture: an in vitro study. Arthroscopy. 2006;22(12):1270–75.e3.PubMedCrossRefGoogle Scholar
  33. 33.
    Bardana DD, Burks RT, West JR, Greis PE. The effect of suture anchor design and orientation on suture abrasion: an in vitro study. Arthroscopy. 2003;19(3):274–81.PubMedCrossRefGoogle Scholar
  34. 34.
    Wust DM, Meyer DC, Favre P, Gerber C. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy. 2006;22(11):1146–53.PubMedCrossRefGoogle Scholar
  35. 35.
    Williams JF, Patel SS, Baker DK, et al. Abrasiveness of high-strength sutures used in rotator cuff surgery: are they all the same? J Shoulder Elbow Surg. 2016;25(1):142–8.PubMedCrossRefGoogle Scholar
  36. 36.
    Savage AJ, Spruiell MD, Schwertz JM, et al. The effect of sliding knots on the suture-tendon interface strength: a biomechanical analysis comparing sliding and static arthroscopic knots. Am J Sports Med. 2013;41(2):296–301.PubMedCrossRefGoogle Scholar
  37. 37.
    Lambrechts M, Nazari B, Dini A, et al. Comparison of the cheese-wiring effects among three sutures used in rotator cuff repair. Int J Shoulder Surg. 2014;8(3):81–5.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Goble EM, Somers WK, Clark R, Olsen RE. The development of suture anchors for use in soft tissue fixation to bone. Am J Sports Med. 1994;22(2):236–9.PubMedCrossRefGoogle Scholar
  39. 39.
    McLaughlin HL. Lesions of the musculotendinous cuff of the shoulder. The exposure and treatment of tears with retraction. 1944. Clin Orthop Relat Res. 1994;304:3–9.Google Scholar
  40. 40.
    Craft DV, Moseley JB, Cawley PW, Noble PC. Fixation strength of rotator cuff repairs with suture anchors and the transosseous suture technique. J Shoulder Elbow Surg. 1996;5(1):32–40.PubMedCrossRefGoogle Scholar
  41. 41.
    Burkhart SS, Johnson TC, Wirth MA, Athanasiou KA. Cyclic loading of transosseous rotator cuff repairs: tension overload as a possible cause of failure. Arthroscopy. 1997;13(2):172–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Klinger HM, Buchhorn GH, Heidrich G, Kahl E, Baums MH. Biomechanical evaluation of rotator cuff repairs in a sheep model: suture anchors using arthroscopic Mason-Allen stitches compared with transosseous sutures using traditional modified Mason-Allen stitches. Clin Biomech (Bristol, Avon). 2008;23(3):291–8.CrossRefGoogle Scholar
  43. 43.
    Pietschmann MF, Frohlich V, Ficklscherer A, et al. Pullout strength of suture anchors in comparison with transosseous sutures for rotator cuff repair. Knee Surg Sports Traumatol Arthrosc. 2008;16(5):504–10.PubMedCrossRefGoogle Scholar
  44. 44.
    Petri M, Dratzidis A, Brand S, et al. Suture anchor repair yields better biomechanical properties than transosseous sutures in ruptured quadriceps tendons. Knee Surg Sports Traumatol Arthrosc. 2015;23(4):1039–45.PubMedCrossRefGoogle Scholar
  45. 45.
    Ettinger M, Dratzidis A, Hurschler C, et al. Biomechanical properties of suture anchor repair compared with transosseous sutures in patellar tendon ruptures: a cadaveric study. Am J Sports Med. 2013;41(11):2540–4.PubMedCrossRefGoogle Scholar
  46. 46.
    Zhao C, Sun YL, Zobitz ME, An KN, Amadio PC. Enhancing the strength of the tendon-suture interface using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and cyanoacrylate. J Hand Surg Am. 2007;32(5):606–11.PubMedCrossRefGoogle Scholar
  47. 47.
    Hotokezaka S, Manske PR. Differences between locking loops and grasping loops: effects on 2-strand core suture. J Hand Surg Am. 1997;22(6):995–1003.PubMedCrossRefGoogle Scholar
  48. 48.
    Momose T, Amadio PC, Zhao C, et al. Suture techniques with high breaking strength and low gliding resistance: experiments in the dog flexor digitorum profundus tendon. Acta Orthop Scand. 2001;72(6):635–41.PubMedCrossRefGoogle Scholar
  49. 49.
    Tanaka T, Amadio PC, Zhao C, et al. Gliding characteristics and gap formation for locking and grasping tendon repairs: a biomechanical study in a human cadaver model. J Hand Surg Am. 2004;29(1):6–14.PubMedCrossRefGoogle Scholar
  50. 50.
    Eaglstein WH, Sullivan T. Cyanoacrylates for skin closure. Dermatol Clin. 2005;23(2):193–8.PubMedCrossRefGoogle Scholar
  51. 51.
    Leggat PA, Kedjarune U, Smith DR. Toxicity of cyanoacrylate adhesives and their occupational impacts for dental staff. Ind Health. 2004;42(2):207–11.PubMedCrossRefGoogle Scholar
  52. 52.
    Pineros-Fernandez A, Rodeheaver PF, Rodeheaver GT. Octyl 2-cyanoacrylate for repair of peripheral nerve. Ann Plast Surg. 2005;55(2):188–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Thoreson AR, Hiwatari R, An KN, Amadio PC, Zhao C. The effect of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide suture coating on tendon repair strength and cell viability in a canine model. J Hand Surg Am. 2015;40(10):1986–91.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Shah A, Rowlands M, Au A. Barbed sutures and tendon repair-a review. Hand (N Y). 2015;10(1):6–15.CrossRefGoogle Scholar
  55. 55.
    Ingle NP, King MW, Zikry MA. Finite element analysis of barbed sutures in skin and tendon tissues. J Biomech. 2010;43(5):879–86.PubMedCrossRefGoogle Scholar
  56. 56.
    Lin TE, Lakhiani C, Lee MR, Saint-Cyr M, Sammer DM. Biomechanical analysis of knotless flexor tendon repair using large-diameter unidirection barbed suture. Hand (N Y). 2013;8(3):315–9.CrossRefGoogle Scholar
  57. 57.
    McClellan WT, Schessler MJ, Ruch DS, Levin LS, Goldner RD. A knotless flexor tendon repair technique using a bidirectional barbed suture: an ex vivo comparison of three methods. Plast Reconstr Surg. 2011;128(4):322e–7e.PubMedCrossRefGoogle Scholar
  58. 58.
    Parikh PM, Davison SP, Higgins JP. Barbed suture tenorrhaphy: an ex vivo biomechanical analysis. Plast Reconstr Surg. 2009;124(5):1551–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Peltz TS, Haddad R, Scougall PJ, et al. Performance of a knotless four-strand flexor tendon repair with a unidirectional barbed suture device: a dynamic ex vivo comparison. J Hand Surg Eur Vol. 2014;39(1):30–9.Google Scholar
  60. 60.
    Joyce CW, Whately KE, Chan JC, et al. Flexor tendon repair: a comparative study between a knotless barbed suture repair and a traditional four-strand monofilament suture repair. J Hand Surg Eur Vol. 2014;39(1):40–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Marrero-Amadeo IC, Chauhan A, Warden SJ, Merrell GA. Flexor tendon repair with a knotless barbed suture: a comparative biomechanical study. J Hand Surg Am. 2011;36(7):1204–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Zeplin PH, Zahn RK, Meffert RH, Schmidt K. Biomechanical evaluation of flexor tendon repair using barbed suture material: a comparative ex vivo study. J Hand Surg Am. 2011;36(3):446–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Trocchia AM, Aho HN, Sobol G. A re-exploration of the use of barbed sutures in flexor tendon repairs. Orthopedics. 2009;32(10). pii.Google Scholar
  64. 64.
    Gililland JM, Anderson LA, Barney JK, et al. Barbed versus standard sutures for closure in total knee arthroplasty: a multicenter prospective randomized trial. J Arthroplast. 2014;29(9 Suppl):135–8.CrossRefGoogle Scholar
  65. 65.
    Smith EL, DiSegna ST, Shukla PY, Matzkin EG. Barbed versus traditional sutures: closure time, cost, and wound related outcomes in total joint arthroplasty. J Arthroplast. 2014;29(2):283–7.CrossRefGoogle Scholar
  66. 66.
    Fowler JR, Perkins TA, Buttaro BA, Truant AL. Bacteria adhere less to barbed monofilament than braided sutures in a contaminated wound model. Clin Orthop Relat Res. 2013;471(2):665–71.PubMedCrossRefGoogle Scholar
  67. 67.
    Maheshwari AV, Naziri Q, Wong A, et al. Barbed sutures in total knee arthroplasty: are these safe, efficacious, and cost-effective? J Knee Surg. 2015;28(2):151–6.PubMedGoogle Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  1. 1.Department of OrthopedicsDokuz Eylul University HospitalIzmırTurkey
  2. 2.Plano Orthopedic Sports Medicine and Spine CenterPlanoUSA

Personalised recommendations