Advertisement

Biological Properties of Suture Materials

  • Onur Başçı
  • Umut Akgun
  • F. Alan Barber
Chapter

Abstract

Suture is a general term for all materials used to stitch torn tissues. Sutures can be synthetic or natural and have a monofilament or braided construction. Through the history of mankind, various materials were tried to serve this purpose. Plants such as flax, hemp, and cotton and animal tissues such as hair, tendon, silk, and intestines are some examples. The oldest, known suture was on a mummy in ancient Egypt on 1100 BC, and the first written description on surgical wound suturing belongs to the Indian physician Sushruta in 500 BC.

References

  1. 1.
    Wust DM, Meyer DC, Favre P, Gerber C. Mechanical and handling properties of braided polyblend polyethylene sutures in comparison to braided polyester and monofilament polydioxanone sutures. Arthroscopy. 2006;22(11):1146–53.CrossRefPubMedGoogle Scholar
  2. 2.
    Deranlot J, Maurel N, Diop A, et al. Abrasive properties of braided polyblend sutures in cuff tendon repair: an in vitro biomechanical study exploring regular and tape sutures. Arthroscopy. 2014;30(12):1569–73.CrossRefPubMedGoogle Scholar
  3. 3.
    Williams JF, Patel SS, Baker DK, et al. Abrasiveness of high-strength sutures used in rotator cuff surgery: are they all the same? J Shoulder Elbow Surg. 2016;25(1):142–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Fowler JR, Perkins TA, Buttaro BA, Truant AL. Bacteria adhere less to barbed monofilament than braided sutures in a contaminated wound model. Clin Orthop Relat Res. 2013;471(2):665–71.CrossRefPubMedGoogle Scholar
  5. 5.
    Esenyel CZ, Demirhan M, Kilicoglu O, et al. Evaluation of soft tissue reactions to three nonabsorbable suture materials in a rabbit model. Acta Orthop Traumatol Turc. 2009;43(4):366–72.CrossRefPubMedGoogle Scholar
  6. 6.
    Bekler HI, Beyzadeoglu T, Gokce A, Servet E. Aseptic drainage associated with polyglactine sutures used for repair of Achilles tendon ruptures. Acta Orthop Traumatol Turc. 2008;42(2):135–8.PubMedGoogle Scholar
  7. 7.
    Carr BJ, Ochoa L, Rankin D, Owens BD. Biologic response to orthopedic sutures: a histologic study in a rabbit model. Orthopedics. 2009;32(11):828.PubMedGoogle Scholar
  8. 8.
    Al-Qattan MM, Kfoury H. A delayed allergic reaction to polypropylene suture used in flexor tendon repair: case report. J Hand Surg Am. 2015;40(7):1377–81.CrossRefPubMedGoogle Scholar
  9. 9.
    Webster RC, McCollough EG, Giandello PR, Smith RC. Skin wound approximation with new absorbable suture material. Arch Otolaryngol. 1985;111(8):517–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Postlethwait RW. Polyglycolic acid surgical suture. Arch Surg. 1970;101(4):489–94.CrossRefPubMedGoogle Scholar
  11. 11.
    Outlaw KK, Vela AR, O’Leary JP. Breaking strength and diameter of absorbable sutures after in vivo exposure in the rat. Am Surg. 1998;64(4):348–54.PubMedGoogle Scholar
  12. 12.
    Herrmann JB, Kelly RJ, Higgins GA. Polyglycolic acid sutures. Laboratory and clinical evaluation of a new absorbable suture material. Arch Surg. 1970;100(4):486–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Craig PH, Williams JA, Davis KW, et al. A biologic comparison of polyglactin 910 and polyglycolic acid synthetic absorbable sutures. Surg Gynecol Obstet. 1975;141(1):1–10.PubMedGoogle Scholar
  14. 14.
    Debus ES, Geiger D, Sailer M, Ederer J, Thiede A. Physical, biological and handling characteristics of surgical suture material: a comparison of four different multifilament absorbable sutures. Eur Surg Res. 1997;29(1):52–61.CrossRefPubMedGoogle Scholar
  15. 15.
    Ross G, Pavlides C, Long F, et al. Absorbable suture materials for vascular anastomoses. Tensile strength and axial pressure studies using polyglycolic acid sutures. Am Surg. 1981;47(12):541–7.PubMedGoogle Scholar
  16. 16.
    Barber FA, Herbert MA, Coons DA, Boothby MH. Sutures and suture anchors—update 2006. Arthroscopy. 2006;22(10):1063.e1–9.CrossRefGoogle Scholar
  17. 17.
    Conn J Jr, Oyasu R, Welsh M, Beal JM. Vicryl (polyglactin 910) synthetic absorbable sutures. Am J Surg. 1974;128(1):19–23.CrossRefPubMedGoogle Scholar
  18. 18.
    Aston SJ, Rees TD. Vicryl sutures. Aesthet Plast Surg. 1976;1(1):289–93.CrossRefGoogle Scholar
  19. 19.
    Hochberg J, Meyer KM, Marion MD. Suture choice and other methods of skin closure. Surg Clin North Am. 2009;89(3):627–41.CrossRefPubMedGoogle Scholar
  20. 20.
    Lerwick E. Studies on the efficacy and safety of polydioxanone monofilament absorbable suture. Surg Gynecol Obstet. 1983;156(1):51–5.PubMedGoogle Scholar
  21. 21.
    Ray JA, Doddi N, Regula D, Williams JA, Melveger A. Polydioxanone (PDS), a novel monofilament synthetic absorbable suture. Surg Gynecol Obstet. 1981;153(4):497–507.PubMedGoogle Scholar
  22. 22.
    Molea G, Schonauer F, Bifulco G, D’Angelo D. Comparative study on biocompatibility and absorption times of three absorbable monofilament suture materials (Polydioxanone, Poliglecaprone 25, Glycomer 631). Br J Plast Surg. 2000;53(2):137–41.CrossRefPubMedGoogle Scholar
  23. 23.
    Chantarasak ND, Milner RH. A comparison of scar quality in wounds closed under tension with PGA (Dexon) and Polydioxanone (PDS). Br J Plast Surg. 1989;42(6):687–91.CrossRefPubMedGoogle Scholar
  24. 24.
    Rodeheaver GT, Powell TA, Thacker JG, Edlich RF. Mechanical performance of monofilament synthetic absorbable sutures. Am J Surg. 1987;154(5):544–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Katz AR, Mukherjee DP, Kaganov AL, Gordon S. A new synthetic monofilament absorbable suture made from polytrimethylene carbonate. Surg Gynecol Obstet. 1985;161(3):213–22.PubMedGoogle Scholar
  26. 26.
    Naghshineh N, Ota KS, Tang L, O’Toole J, Rubin JP. A double-blind controlled trial of polyglytone 6211 versus poliglecaprone 25 for use in body contouring. Ann Plast Surg. 2010;65(2):124–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Wickham MQ, Wyland DJ, Glisson RR, Speer KP. A biomechanical comparison of suture constructs used for coracoclavicular fixation. J South Orthop Assoc. 2003;12(3):143–8.PubMedGoogle Scholar
  28. 28.
    Brouwers JE, Oosting H, de Haas D, Klopper PJ. Dynamic loading of surgical knots. Surg Gynecol Obstet. 1991;173(6):443–8.PubMedGoogle Scholar
  29. 29.
    Trimbos JB, Van Rijssel EJ, Klopper PJ. Performance of sliding knots in monofilament and multifilament suture material. Obstet Gynecol. 1986;68(3):425–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Niessen FB, Spauwen PH, Kon M. The role of suture material in hypertrophic scar formation: Monocryl vs. Vicryl-rapide. Ann Plast Surg. 1997;39(3):254–60.CrossRefPubMedGoogle Scholar
  31. 31.
    Barber FA, Herbert MA, Beavis RC. Cyclic load and failure behavior of arthroscopic knots and high strength sutures. Arthroscopy. 2009;25(2):192–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Wright PB, Budoff JE, Yeh ML, Kelm ZS, Luo ZP. Strength of damaged suture: an in vitro study. Arthroscopy. 2006;22(12):1270–75.e3.CrossRefPubMedGoogle Scholar
  33. 33.
    Masini BD, Stinner DJ, Waterman SM, Wenke JC. Bacterial adherence to high—tensile strength sutures. Arthroscopy. 2011;27(6):834–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Leek BT, Tasto JP, Tibor LM, et al. Augmentation of tendon healing with butyric acid-impregnated sutures: biomechanical evaluation in a rabbit model. Am J Sports Med. 2012;40(8):1762–71.CrossRefPubMedGoogle Scholar
  35. 35.
    Edlich RF, Gubler K, Wallis AG, et al. Wound closure sutures and needles: a new perspective. J Environ Pathol Toxicol Oncol. 2010;29(4):339–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Rodeheaver GT, Beltran KA, Green CW, et al. Biomechanical and clinical performance of a new synthetic monofilament absorbable suture. J Long Term Eff Med Implants. 1996;6(3–4):181–98.PubMedGoogle Scholar
  37. 37.
    Rohrich RJ, Trott SA, Love M, Beran SJ, Orenstein HH. Mersilene suture as a vehicle for delivery of growth factors in tendon repair. Plast Reconstr Surg. 1999;104(6):1713–7.CrossRefPubMedGoogle Scholar
  38. 38.
    Hamada Y, Katoh S, Hibino N, et al. Effects of monofilament nylon coated with basic fibroblast growth factor on endogenous intrasynovial flexor tendon healing. J Hand Surg Am. 2006;31(4):530–40.CrossRefPubMedGoogle Scholar
  39. 39.
    Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D, Gronowicz G. RGD-tethered silk substrate stimulates the differentiation of human tendon cells. Clin Orthop Relat Res. 2006;448:234–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Yao J, Woon CY, Behn A, et al. The effect of suture coated with mesenchymal stem cells and bioactive substrate on tendon repair strength in a rat model. J Hand Surg Am. 2012;37(8):1639–45.CrossRefPubMedGoogle Scholar
  41. 41.
    Adams SB Jr, Thorpe MA, Parks BG, et al. Stem cell-bearing suture improves Achilles tendon healing in a rat model. Foot Ankle Int. 2014;35(3):293–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Storch M, Perry LC, Davidson JM, Ward JJ. A 28-day study of the effect of Coated VICRYL* Plus Antibacterial Suture (coated polyglactin 910 suture with triclosan) on wound healing in guinea pig linear incisional skin wounds. Surg Infect (Larchmt). 2002;3(Suppl 1):S89–98.CrossRefGoogle Scholar
  43. 43.
    Li Y, Kumar KN, Dabkowski JM, et al. New bactericidal surgical suture coating. Langmuir. 2012;28(33):12134–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Shao K, Han B, Gao J, et al. Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing. J Biomed Mater Res B Appl Biomater. 2016;104(1):116–25.CrossRefPubMedGoogle Scholar
  45. 45.
    Dennis C, Sethu S, Nayak S, et al. Suture materials—current and emerging trends. J Biomed Mater Res A. 2016;104(6):1544–59.CrossRefPubMedGoogle Scholar
  46. 46.
    Zhang S, Liu X, Wang H, Peng J, Wong KK. Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice. J Pediatr Surg. 2014;49(4):606–13.CrossRefPubMedGoogle Scholar
  47. 47.
    Zhao C, Sun YL, Zobitz ME, An KN, Amadio PC. Enhancing the strength of the tendon-suture interface using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and cyanoacrylate. J Hand Surg Am. 2007;32(5):606–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Thoreson AR, Hiwatari R, An KN, Amadio PC, Zhao C. The effect of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide suture coating on tendon repair strength and cell viability in a canine model. J Hand Surg Am. 2015;40(10):1986–91.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Weldon CB, Tsui JH, Shankarappa SA, et al. Electrospun drug-eluting sutures for local anesthesia. J Control Release. 2012;161(3):903–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Casalini T, Masi M, Perale G. Drug eluting sutures: a model for in vivo estimations. Int J Pharm. 2012;429(1–2):148–57.CrossRefPubMedGoogle Scholar
  51. 51.
    Morizumi S, Suematsu Y, Gon S, Shimizu T. Inhibition of neointimal hyperplasia with a novel tacrolimus-eluting suture. J Am Coll Cardiol. 2011;58(4):441–2.CrossRefPubMedGoogle Scholar
  52. 52.
    Barber FA, Gurwitz GS. Inflammatory synovial fluid and absorbable suture strength. Arthroscopy. 1988;4(4):272–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Gililland JM, Anderson LA, Sun G, Erickson JA, Peters CL. Perioperative closure-related complication rates and cost analysis of barbed suture for closure in TKA. Clin Orthop Relat Res. 2012;470(1):125–9.Google Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  1. 1.9 Eylül UniversityİzmirTurkey
  2. 2.Acıbadem Mehmet Ali Aydınlar UniversityIstanbulTurkey
  3. 3.Plano Orthopedic Sports Med CenterPlanoUSA

Personalised recommendations