Skip to main content

Membrane Electrode Assembly (MEA)

  • Chapter
  • First Online:
Low Platinum Fuel Cell Technologies

Part of the book series: Energy and Environment Research in China ((EERC))

  • 858 Accesses

Abstract

With a continuous decrease in Pt loading, mass transport resistances within MEA are severely aggravated, especially that the oxygen transport resistance is becoming an obstacle for commercialization of fuel cells. In this chapter, the proton transport in the ultrathin perfluorosulfonic acid ionomer film covered on catalyst surface is investigated first. Next, the oxygen transport behavior including gas diffusion in porous electrode and gas permeation in ultrathin perfluorosulfonic acid ionomer film is probed; thus, the underlying transport mechanism is discussed detailedly. In addition, the application of numerous novel electrocatalysts leads to high ORR performances but also cation contamination, which is also assessed in the last part of this section. Herein, we shed light on transport and reaction mechanism inside the MEA, as well as provide key insights for optimization design for appropriate electrode structures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. USDOE DOE hydrogen and fuel cells program record. https://www.hydrogen.energy.gov/pdfs/15006_separation_distance_reduction.pdf.

  2. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chem Rev 117(3):987–1104

    Article  CAS  Google Scholar 

  3. Cetinbas FC, Ahluwalia RK et al (2017) Hybrid approach combining multiple characterization techniques and simulations for microstructural analysis of proton exchange membrane fuel cell electrodes. 344:62–73

    CAS  Google Scholar 

  4. Helmly S, Hiesgen R et al (2013) Microscopic investigation of platinum deposition in PEMFC cross-sections using AFM and SEM. J Electrochem Soc 160(6):F687–F697

    Google Scholar 

  5. Klingele M, Breitwieser M et al (2015) Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. J Mater Chem A 3(21):11239–11245

    Google Scholar 

  6. Katayanagi Y, Shimizu T et al (2015) Cross-sectional observation of nanostructured catalyst layer of polymer electrolyte fuel cell using FIB/SEM. J Power Sources 280:210–216

    Article  CAS  Google Scholar 

  7. Suzuki T, Tsushima S et al (2010) Characterization of the PEMFC catalyst layer by cross-sectional visualization and performance evaluation. ECS Trans 33(1):1465

    Google Scholar 

  8. Zils S, Timpel M et al (2010) 3D visualisation of PEMFC electrode structures using FIB nanotomography. Fuel Cells 10(6):966–972

    Google Scholar 

  9. Singh R, Akhgar AR et al (2014) Dual-beam FIB/SEM characterization, statistical reconstruction, and pore scale modeling of a PEMFC catalyst layer. J Electrochem Soc 161(4):F415–F424

    Google Scholar 

  10. Ott S, Orfanidi A et al (2020) Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat Mater 19(1):77–85

    Article  CAS  Google Scholar 

  11. Shen S, Han A et al (2019) Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J Electrochem Soc 166(12):F724–F728

    Google Scholar 

  12. Bass M, Berman A et al (2010) Surface structure of nafion in vapor and liquid. J Phys Chem B 114(11):3784–3790

    Article  CAS  Google Scholar 

  13. Iden H, Takaichi S et al (2013) Relationship between gas transport resistance in the catalyst layer and effective surface area of the catalyst. J Electroanal Chem 694:37–44

    Article  CAS  Google Scholar 

  14. Liu H, Epting WK et al (2015) Gas transport resistance in polymer electrolyte thin films on oxygen reduction reaction catalysts. Langmuir 31(36):9853–9858

    Article  CAS  Google Scholar 

  15. Nonoyama N, Okazaki S et al (2011) Analysis of oxygen-transport diffusion resistance in proton-exchange-membrane fuel cells. J Electrochem Soc 158(4):B416–B423

    Article  CAS  Google Scholar 

  16. Novitski D, Holdcroft S (2015) Determination of O2 mass transport at the Pt | PFSA Ionomer Interface under reduced relative humidity. ACS Appl Mater Interfaces 7(49):27314–27323

    Article  CAS  Google Scholar 

  17. Weber AZ, Kusoglu A (2014) Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J Mater Chem A 2(41):17207–17211

    Article  CAS  Google Scholar 

  18. Suzuki T, Kudo K et al (2013) Model for investigation of oxygen transport limitation in a polymer electrolyte fuel cell. J Power Sources 222:379–389

    Article  CAS  Google Scholar 

  19. Greszler TA, Caulk D et al (2012) The impact of platinum loading on oxygen transport resistance. J Electrochem Soc 159(12):F831–F840

    Article  CAS  Google Scholar 

  20. Kudo K, Jinnouchi R et al (2016) Humidity and temperature dependences of oxygen transport resistance of nafion thin film on platinum electrode. Electrochim Acta 209:682–690

    Article  CAS  Google Scholar 

  21. Karan K (2017) PEFC catalyst layer: recent advances in materials, microstructural characterization, and modeling. Curr Opin Electrochem 5(1):27–35

    Article  CAS  Google Scholar 

  22. Suzuki A, Sen U et al (2011) Ionomer content in the catalyst layer of polymer electrolyte membrane fuel cell (PEMFC): effects on diffusion and performance. Int J Hydrogen Energy 36(3):2221–2229

    Article  CAS  Google Scholar 

  23. Okumura M, Noda Z et al (2016) An FIB-SEM study on correlations between PEFC electrocatalyst microstructure and cell performance. ECS Trans 75(14):347–354

    Article  CAS  Google Scholar 

  24. Baker DR, Caulk DA et al (2009) Measurement of oxygen transport resistance in PEM fuel cells by limiting current methods. J Electrochem Soc 156(9):B991–B1003

    Article  CAS  Google Scholar 

  25. Wang C, Cheng X et al (2017) The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J Phys Chem Lett 8(23):5848–5852

    Article  CAS  Google Scholar 

  26. Wang C, Cheng X et al (2019) Respective influence of ionomer content on local and bulk oxygen transport resistance in the catalyst layer of PEMFCs with low Pt loading. J Electrochem Soc 166(4):F239–F245

    Article  CAS  Google Scholar 

  27. Lopez-Haro M, Guétaz L et al (2014) Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat Commun 5(1):5229

    Article  CAS  Google Scholar 

  28. Zhao J, He X et al (2007) Addition of NH4HCO3 as pore-former in membrane electrode assembly for PEMFC. Int J Hydrogen Energy 32(3):380–384

    Article  CAS  Google Scholar 

  29. Mu S, Xu C et al (2010) Accelerated durability tests of catalyst layers with various pore volume for catalyst coated membranes applied in PEM fuel cells. Int J Hydrogen Energy 35(7):2872–2876

    Article  CAS  Google Scholar 

  30. Uchida M, Fukuoka Y et al (1996) Effects of microstructure of carbon support in the catalyst layer on the performance of polymer-electrolyte fuel cells. J Electrochem Soc 143(7):2245–2251

    Article  CAS  Google Scholar 

  31. Perry RH, Green DW et al (1997) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill, New York, pp 323R–325R

    Google Scholar 

  32. Pollard WG, Present RD (1948) On gaseous self-diffusion in long capillary tubes. Phys Rev 73(7):762–774

    Article  CAS  Google Scholar 

  33. Lange KJ, Sui P-C et al (2011) Pore scale modeling of a proton exchange membrane fuel cell catalyst layer: effects of water vapor and temperature. J Power Sources 196(6):3195–3203

    Article  CAS  Google Scholar 

  34. Nam JH, Lee K-J et al (2009) Microporous layer for water morphology control in PEMFC. Int J Heat Mass Transf 52(11):2779–2791

    Article  CAS  Google Scholar 

  35. Yu Z, Carter RN et al (2012) Measurements of pore size distribution, porosity, effective oxygen diffusivity, and tortuosity of PEM fuel cell electrodes. Fuel Cells 12(4):557–565

    Article  CAS  Google Scholar 

  36. Beuscher U (2006) Experimental method to determine the mass transport resistance of a polymer electrolyte fuel cell. J Electrochem Soc 153(9):A1788–A1793

    Article  CAS  Google Scholar 

  37. Stumper J, Haas H et al (2005) In situ determination of MEA resistance and electrode diffusivity of a fuel cell. J Electrochem Soc 152(4):A837–A844

    Article  CAS  Google Scholar 

  38. Cheng X, Wang C et al (2019) Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J Electrochem Soc 166(14):F1055–F1061

    Article  CAS  Google Scholar 

  39. Wang C, Cheng X et al (2017) The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J Phys Chem Lett 8(23)

    Google Scholar 

  40. Shen J, Zhou J et al (2011) Measurement of effective gas diffusion coefficients of catalyst layers of PEM fuel cells with a Loschmidt diffusion cell. J Power Sources 196(2):674–678

    Article  CAS  Google Scholar 

  41. Berning T, Lu D et al (2002) Three-dimensional computational analysis of transport phenomena in a PEM fuel cell. J Power Sources 106(1–2):284–294

    Article  CAS  Google Scholar 

  42. Wang C-Y (2004) Fundamental models for fuel cell engineering. Chem Rev 104(10):4727–4766

    Article  CAS  Google Scholar 

  43. Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media 88(2):193–203

    Article  CAS  Google Scholar 

  44. Yu C (2011) Numerical analysis of heat and mass transfer for porous materials a theory of drying. Tsinghua University Press, Beijing

    Google Scholar 

  45. Brownell L, Gami D et al (1956) Pressure drop through porous media. AIChE J 2(1):79–81

    Article  CAS  Google Scholar 

  46. Shen S, Cheng X et al (2017) Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys Chem Chem Phys 19(38):26221–26229

    Article  CAS  Google Scholar 

  47. Okada T, Dale J et al (1999) Unprecedented effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. Langmuir 15(24):8490–8496

    Article  CAS  Google Scholar 

  48. Okada T, Ayato Y et al (2000) Oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer in the presence of impurity cations Fe3+, Ni2+ and Cu2+. Phys Chem Chem Phys 2(14):3255–3261

    Article  CAS  Google Scholar 

  49. Okada T, Ayato Y et al (2001) The effect of impurity cations on the oxygen reduction kinetics at platinum electrodes covered with perfluorinated ionomer. J Phys Chem B 105(29):6980–6986

    Article  CAS  Google Scholar 

  50. Li H, Gazzarri J et al (2010) PEM fuel cell cathode contamination in the presence of cobalt ion (Co2+). Electrochim Acta 55(20):5823–5830

    Article  CAS  Google Scholar 

  51. Kienitz B, Baskaran H et al (2007) A half cell model to study performance degradation of a PEMFC due to cationic contamination. ECS Trans 11(1):777–788

    Google Scholar 

  52. Kienitz B, Pivovar B et al (2011) Cationic contamination effects on polymer electrolyte membrane fuel cell performance. J Electrochem Soc 158(9):B1175–B1183

    Google Scholar 

  53. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon press, Oxford, 644 p

    Google Scholar 

  54. Yu Z, Zhang J et al (2012) Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J Phys Chem C 116(37):19877–19885

    Article  CAS  Google Scholar 

  55. Kelly MJ, Fafilek G et al (2005) Contaminant absorption and conductivity in polymer electrolyte membranes. J Power Sources 145(2):249–252

    Article  CAS  Google Scholar 

  56. Okada T, Ayato Y et al (1999) The effect of impurity cations on the transport characteristics of perfluorosulfonated ionomer membranes. J Phys Chem B 103(17):3315–3322

    Article  CAS  Google Scholar 

  57. Zhu F, Wu A et al (2020) The asymmetric effects of Cu2+ contamination in a proton exchange membrane fuel cell (PEMFC). Fuel Cells 20(2):196–202

    Google Scholar 

  58. Neyerlin KC, Gu W et al (2007) Cathode catalyst utilization for the ORR in a PEMFC: analytical model and experimental validation. J Electrochem Soc 154(2):B279–B287

    Google Scholar 

  59. Makharia R, Mathias MF et al (2005) Measurement of catalyst layer electrolyte resistance in PEFCs using electrochemical impedance spectroscopy. J Electrochem Soc 152(5):A970–A977

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Shen, S. (2021). Membrane Electrode Assembly (MEA). In: Low Platinum Fuel Cell Technologies. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56070-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56070-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56068-6

  • Online ISBN: 978-3-662-56070-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics