Skip to main content

Proton Exchange Membrane Fuel Cells (PEMFCs)

  • Chapter
  • First Online:

Part of the book series: Energy and Environment Research in China ((EERC))

Abstract

Membrane electrode assembly (MEA) is the core component of proton exchange membrane fuel cell, which is composed of proton exchange membrane, cathode and anode catalytic layers and gas diffusion layers. The cost of MEA accounts for more than 60% of that of the total system, and particularly, the cost of platinum (Pt) catalysts accounts for nearly 70% of MEA cost. It has been well recognized that the high cost caused by high Pt loading in MEA is one of the key issues that hinder the commercialization of fuel cells, and thus the most direct way to reduce the cost of fuel cells is to reduce the amount of Pt in the MEA. However, a continuous decrease in the Pt loading in MEA will cause more serious activation overpotential and oxygen transport problems. In order to solve the above difficulties, on one hand, low Pt electrocatalysts, such as Pt alloy catalysts, Pt core–shell catalysts and shape-controlled Pt-based nanocrystals, have been proposed to improve the catalytic activities in the MEA, and on the other hand, accurately measuring the mass transfer resistance in catalytic layers is conducive to the development of low Pt membrane electrode technology. In this section, the introduction of PEMFCs and the components of MEA including proton exchange membrane (PEM), catalyst layers and gas diffusion layers (GDLs) are then discussed. In addition, low Pt electrocatalysts are our focus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Liu CY, Sung CC (2012) A review of the performance and analysis of proton exchange membrane fuel cell membrane electrode assemblies. J Power Sources 220:348–353

    Article  CAS  Google Scholar 

  2. Yang SY, Seo DJ, Kim MJ et al (2016) Fast stack activation procedure and effective long-term storage for high-performance polymer electrolyte membrane fuel cell. J Power Sources 328:75–80

    Article  CAS  Google Scholar 

  3. Borup RL, Meyers JP, Pivovar BS et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  CAS  Google Scholar 

  4. Tseng CJ, Lo SK (2010) Effects of microstructure characteristics of gas diffusion layer and microporous layer on the performance of PEMFC. Energy Convers Manage 51:677–684

    Article  CAS  Google Scholar 

  5. Appleby AJ, Foulkes FR (1989) Fuel cell handbook. Van Nostrand Reinhold, New York

    Google Scholar 

  6. Ticianelli EA, Derouin CR, Redondo A et al (1988) Methods to advance technology of proton exchange membrane fuel cells. J Electrochem Soc 135:2209–2214

    Article  CAS  Google Scholar 

  7. Wilson MS, Gottesfeld SJ (1992) Influence of the structure in low Pt loading electrodes for polymer electrolyte fuel cells. J Electrochem Soc 139:L28–30

    Article  CAS  Google Scholar 

  8. Mehta V, Cooper J (2003) Review and analysis of PEM fuel cell design and manufacturing. J Power Sources 114:32–53

    Article  CAS  Google Scholar 

  9. Leimin X, Shijun L, Lijun Y et al (2009) Investigation of a novel catalyst coated membrane method to prepare low platinum-loading membrane electrode assemblies for PEMFCs. Fuel Cells 9:101–105

    Article  CAS  Google Scholar 

  10. Grubb WT Jr (1959) Batteries with solid ion-exchange electrolytes. J Electrochem Soc 106:275

    Article  CAS  Google Scholar 

  11. Grot W, Resnick P (1987) U.S. Patent 4,113,585

    Google Scholar 

  12. Kraytsberg A, Ein-El Y (2014) Review of advanced materials for proton exchange membrane fuel cells. Energy Fuels 28:7303–7330

    Article  CAS  Google Scholar 

  13. Michael AY, Matthew JL, Steven JH et al (2019) New directions in perfluoroalkyl sulfonic acid-based proton-exchange membranes. Curr Opin Electrochem 18:90–98

    Article  CAS  Google Scholar 

  14. Zhang LW, Chae SR, Hendren Z et al (2012) Recent advances in proton exchange membranes for fuel cell applications. Chem Eng J 204:87–97

    Article  CAS  Google Scholar 

  15. Kreuer KD (1996) Proton conductivity: materials and applications. Chem Mater 8:610–641

    Article  CAS  Google Scholar 

  16. Haubold HG, Vad T, Jungbluth H et al (2001) Nano structure of NAFION: a SAXS study. Electrochim Acta 46:1559–1563

    Article  CAS  Google Scholar 

  17. Gebel G (2000) Structural evolution of water swollen perfluorosulfonated ionomers from dry membrane to solution. Polymer 41:5829–5838

    Article  CAS  Google Scholar 

  18. Herring AM (2006) Inorganic-polymer composite membranes for proton exchange membrane fuel cells. J Macromol Sci Part C Polym Rev 46:245–296

    Google Scholar 

  19. Sun X, Simonsen SC, Norby T et al (2019) Composite membranes for high temperature PEM fuel cells and electrolytes: a critical review. Membranes 9:1–46

    Article  CAS  Google Scholar 

  20. Okazoe T, Shirakawa D, Murata K (2012) Application of liquid-phase direct fluorination: novel synthetic methods for a polyfluorinated coating material and a monomer of a perfluorinated polymer electrolyte membrane. Appl Sci 2:327–341

    Article  CAS  Google Scholar 

  21. Holdcroft S (2014) Fuel cell catalyst layers: a polymer science perspective. Chem Mater 26:381–393

    Article  CAS  Google Scholar 

  22. Conway BE, Tilak BV (2002) Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim Acta 47:3571

    Article  CAS  Google Scholar 

  23. Fishtik I, Callaghan CA, Fehribach RD (2005) A reaction route graph analysis of the electrochemical hydrogen oxidation and evolution reactions. J Electroanal Chem 576:57–63

    Article  CAS  Google Scholar 

  24. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  25. Norskov JK, Rossmeisl J, Logadottir A et al (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  26. Karen E, Swider L, Stephen A (2013) Campbell. Physical chemistry research toward proton exchange membrane fuel cell advancement. J Phys Chem Lett 4:393–401

    Google Scholar 

  27. Gasteiger HA, Panels JE, Yan SG (2004) Dependence of PEM fuel cell performance on catalyst loading. J Power Sources 127:162–171

    Google Scholar 

  28. Gasteiger HA, Kocha SS, Sompalli B et al (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  29. Alia SM, Ngo C, Shulda S et al (2016) Highly active and durable extended surface oxygen reduction electrocatalysts. ECS Meeting Abstracts MA2016-02, 2445

    Google Scholar 

  30. Park J, Wang H, Vara M et al (2016) Platinum cubic nanoframes with enhanced catalytic activity and durability toward oxygen reduction. ChemSusChem 9:2855–2861

    Article  CAS  Google Scholar 

  31. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J Power Sources 102:242–252

    Google Scholar 

  32. Wilson MS, Gottesfeld S (1992) High performance catalyzed membranes of ultra-low Pt loading for polymer electrolyte fuel cells. J Electrochem Soc 139:L28–L30

    Article  CAS  Google Scholar 

  33. Srinivasan S, Ticianelli EA, Derouin CR et al (1988) Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes. J Power Sources 22:359–375

    Article  CAS  Google Scholar 

  34. Cindrella L, Kannan AM, Lin JF et al (2009) Gas diffusion layer for proton exchange membrane fuel cells—a review. J Power Sources 194:146–160

    Article  CAS  Google Scholar 

  35. Jayakumar A, Sethu S, Ramos M et al (2014) A technical review on gas diffusion, mechanism and medium of PEM fuel cell. Ionics 21:1–18

    Article  CAS  Google Scholar 

  36. Jorg R, Jens E, Federica M et al (2013) Investigation of the representative area of the water saturation in gas diffusion layers of polymer electrolyte fuel cells. J Phys Chem C 117:25991–25999

    Article  CAS  Google Scholar 

  37. Mathias M, Roth J, Lehnert W (2003) Diffusion media materials and characterization. John Wiley & Sons, New York

    Google Scholar 

  38. Liao YK, Ko TH, Liu CH (2008) Performance of a polymer electrolyte membrane fuel cell with fabricated carbon fiber cloth electrode. Energy Fuels 22:3351–3354

    Article  CAS  Google Scholar 

  39. Liu CH, Ko TH, Chang EC et al (2008) Effect of carbon fiber paper made from carbon felt with different yard weights on the performance of low temperature proton exchange membrane fuel cells. J Power Sources 180:276–282

    Article  CAS  Google Scholar 

  40. Yazici MS (2007) Mass transfer layer for liquid fuel cells. J Power Sources 166:424–429

    Article  CAS  Google Scholar 

  41. Thomas YRJ, Benayad A, Schroder M et al (2015) New method for super hydrophobic treatment of gas diffusion layers for proton exchange membrane fuel cells using electrochemical reduction of diazonium salts. ACS Appl Mater Interfaces 7:15068–15077

    Article  CAS  Google Scholar 

  42. Laoun B, Kasat HA, Ahmad R et al (2018) Gas diffusion layer development using design of experiments for the optimization of a proton exchange membrane fuel cell performance. Energy 151:689–695

    Article  CAS  Google Scholar 

  43. Ozden A, Shahgaldi S, Zhao J et al (2018) Assessment of graphene as an alternative microporous layer material for proton exchange membrane fuel cells. Fuel 215:726–734

    Article  CAS  Google Scholar 

  44. Barbir F (2005) PEM fuel cells: theory and practice. Elsevier Academic Press, Amsterdam

    Google Scholar 

  45. Banham D, Ye SY (2017) Current status and future development of catalyst materials and catalyst layers for proton exchange membrane fuel cells: an industrial perspective. ACS Energy Lett 2:629–638

    Article  CAS  Google Scholar 

  46. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst. J Power Sources 172:145–154

    Article  CAS  Google Scholar 

  47. Yu X, Ye S (2007) Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J Power Sources 172:133–144

    Google Scholar 

  48. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299

    Article  CAS  Google Scholar 

  49. Jalan VM, Landsman DA, Lee JM (1980) U.S. Patent 4,192,907

    Google Scholar 

  50. Toda T, Igarashi H, Uchida H et al (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  51. Stamenkovic V, Schmidt TJ, Ross PN et al (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106:11970–11979

    Article  CAS  Google Scholar 

  52. Jia QY, Liang WT, Bates MK et al (2015) Activity descriptor identification for oxygen reduction on platinum-based bimetallic nanoparticles: in situ observation of the linear composition-strain-activity relationship. ACS Nano 9:387–400

    Article  CAS  Google Scholar 

  53. Stephens IEL, Bondarenko AS, Gronbjerg U et al (2012) Understanding the electrocatalysis of oxygen reduction on platinum and its alloys. Energy Environ Sci 5:6744–6762

    Article  CAS  Google Scholar 

  54. Park HY, Jeon TY, Jang JH et al (2013) Enhancement of oxygen reduction reaction on PtAu nanoparticles via CO induced surface Pt enrichment. Appl Catal B 129:375–381

    Article  CAS  Google Scholar 

  55. Stamenkovic VR, Mun BS, Arenz M et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  56. Wang C, Li D, Chi M et al (2012) Rational development of ternary alloy electrocatalysts. J Phys Chem Lett 3:1668–1673

    Article  CAS  Google Scholar 

  57. Ozenler S, Sahin N, Akaydin B et al (2011) ECS Trans 41:1031–1042

    Google Scholar 

  58. Wang C, Wang G, van der Vliet D et al (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939

    Google Scholar 

  59. Loukrakpam R, Luo J, He T et al (2011) Nanoengineered PtCo and PtNi catalysts for oxygen reduction reaction: an assessment of the structural and electrocatalytic properties. J Phys Chem C 115:1682–1694

    Article  CAS  Google Scholar 

  60. Shao MH, Chang QW, Dodelet JP et al (2016) Recent advances in electrocatalysts for oxygen reduction reaction. Chem Rev 116:3594–3657

    Article  CAS  Google Scholar 

  61. Hou JB, Yang M, Ke CC et al (2020) Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization. EnergyChem

    Google Scholar 

  62. Wang C, Chi M, Li D et al (2011) Design and synthesis of bimetallic electrocatalyst with multilayered Pt-Skin surfaces. J Am Chem Soc 133:14396–14403

    Article  CAS  Google Scholar 

  63. Luo J, Wang L, Mott D et al (2008) Core@shell nanoparticles as electrocatalysts for fuel cell reactions. Adv Mater 20:4342–4347

    Article  CAS  Google Scholar 

  64. Hartl K, Mayrhofer KJ, Lopez M et al (2010) AuPt core-shell nanocatalysts with bulk Pt activity. Electrochem Commun 12:1487–1489

    Article  CAS  Google Scholar 

  65. Zhang JL, Vukmirovic MB, Sasaki K et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481

    Article  CAS  Google Scholar 

  66. Luo LX, Zhu FJ, Tian RX et al (2007) Composition-graded PdxNi1x nanospheres with Pt monolayer shells as high-performance electrocatalysts for oxygen reduction reaction. ACS Catal 7:5420–5430

    Article  CAS  Google Scholar 

  67. Stamenkovic VR, Fowler B, Mun BS (2007) Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  68. Tian X, Luo J, Nan H et al (2016) J Am Chem Soc 138:1575–1583

    Google Scholar 

  69. Choi SI, Shao MH, Lu N et al (2014) Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction. ACS Nano 8:10363–10371

    Article  CAS  Google Scholar 

  70. Li YD, Wang C, Strmcnik DS et al (2014) Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ Sci 7:4061–4069

    Article  CAS  Google Scholar 

  71. Kongkanand A, Mathias M (2016) The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J Phys Chem Lett 7:1127–1137

    Article  CAS  Google Scholar 

  72. Kishimoto T, Sato T, Kobayashi Y et al (2016) ECS meeting abstracts 2, 2824

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junliang Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, J., Shen, S. (2021). Proton Exchange Membrane Fuel Cells (PEMFCs). In: Low Platinum Fuel Cell Technologies. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56070-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56070-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56068-6

  • Online ISBN: 978-3-662-56070-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics