Advertisement

SAR Interferometry

  • Ravi P. Gupta
Chapter

Abstract

SAR interferometry (also called InSAR) is used for deriving high accuracy elevation data and generating digital elevation models. It primarily uses phase data from repetitive or multiple SAR signal from which interferograms are generated. Baseline is a very important consideration in SAR interferometry application. A number of aerial InSAR sensors have been designed and flown all over the world. ERS-1/-2 space missions turned out to be a milestone in InSAR. Corner reflectors are used for collecting ground truth. Differential InSAR (DInSAR) has applications in measuring displacements associated with earthquakes, land subsidence, landslide movement, volcano monitoring, and mapping/detection of movement of surface features.

References

  1. Briole P, Massonnet D, Delacourt C (1997) Post-Eruptive deformation associated with the 1986-87 and 1989 lave flows of Etna, detected by radar interferometry. Geophys Res Lett 24:37–40CrossRefGoogle Scholar
  2. Chatterjee RS, Singh KB, Thapa S, Kumar D (2016) The present status of subsiding land vulnerable to roof collapse in the Jharia Coalfield, India, as obtained from shorter temporal baseline C-band DInSAR by smaller spatial subset unwrapped phase profiling. Int J Remote Sens 37(1):176–190CrossRefGoogle Scholar
  3. Chaussard E, Bürgmann R, Cohen-Waeber J, Delbridge B (2015) Landslide monitoring with InSAR. http://dels.nas.edu/resources/static-assets/besr/miscellaneous/LandslidesFeb2015/Chaussard2015.pdf. Accessed on 27 April 2017
  4. Cloude SR (2009) Polarisation: applications in remote sensing. Oxford University Press, New YorkCrossRefGoogle Scholar
  5. Cloude SR, Papathanassiou KP (1998) Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 36(5):1551–1565CrossRefGoogle Scholar
  6. Coulson S (1993) SAR interferometry with ERS-l. ESA-publ, Earth Obs Quart 40:20–23Google Scholar
  7. Dong S, Yin H, Yao S, Zhang F (2013) Detecting surface subsidence in coal mining area based on DInSAR technique. J Earth Sci 24(3):449–456CrossRefGoogle Scholar
  8. Evans DL, Farr TG, Zebker HA, Mouginis-Mark PJ (1992) Radar interferometry studies of the earth’s topography. EOS Trans Am Geophys Union 73(533):557–558Google Scholar
  9. Ferretti A, Prati C, Rocca F (2000) Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans Geosci Remote Sens 38(5):2202–2212CrossRefGoogle Scholar
  10. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–30CrossRefGoogle Scholar
  11. Franceschetti G, Lanari R (1999) Synthetic aperture radar processing. CRC Press, Baco Raton, Florida, p 307 pGoogle Scholar
  12. Gabriel AK, Goldstein RM (1988) Crossed orbit interferometry, theory and experimental results from SIR-B. Int J Remote Sens 9:857–872CrossRefGoogle Scholar
  13. Gabriel AK, Goldstein RM, Zebker HA (1989) Mapping small elevation changes over large areas, differential radar interferometry. J Geophys Res 94(B7):9183–9191CrossRefGoogle Scholar
  14. Galloway DL et al. (1998) Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour Res 34(10): 2573–2585Google Scholar
  15. Gens R (1998) Quality assessment of sar interferometric data. ITC Publication No 61, 141 ppGoogle Scholar
  16. Gens R, van Genderen JL (1996) SAR interferometry -issues, techniques, applications. Int J Remote Sens 17:1803–1835Google Scholar
  17. Ghiglia DC, Pritt MD (1998) Two-dimensional phase unwrapping: theory, algorithms and software. Wiley Interscience, USA, 493 pGoogle Scholar
  18. Goldstein RM, Barnett TP, Zebker HA (1989) Remote sensing of ocean currents. Science 246:1282–1285CrossRefGoogle Scholar
  19. Goldstein RM, Engelhardt H, Kamb B, Frolich RM (1993) Satellite radar interferometry for monitoring ice sheet motion, application to an Antarctic ice stream. Science 262:1525–1530CrossRefGoogle Scholar
  20. Graham LC (1974) Synthetic interferometer radar for topographic mapping. Proc IEEE 62:763–768CrossRefGoogle Scholar
  21. Jonsson S, Adam N, Bjornsson H (1998) Effects of geothermal activity observed by satellite radar interferometry. Geophysic Res Lett 25(7):1059–1062CrossRefGoogle Scholar
  22. Joughin et al (1998) Interferometric estimation of three-dimensional ice-f1ow using ascending and descending passes. IEEE Trans Geosci Remote Sens 36(1):25–35CrossRefGoogle Scholar
  23. Kugler F, Lee SK, Papathanassiou KP (2009) Estimation of forest vertical structure parameter by means of multi-baseline Pol-InSAR. In: Proceedings of IEEE international geoscience and remote sensing symposium (IGARSS), Cape Town, South AfricaGoogle Scholar
  24. Madsen SN, Zebker HA (1998) Imaging radar interferometry. In: Henderson FM, Lewis AJ (eds) Principles and applications of imaging radar, Manual of remote sensing, 3rd ed, vol 2, pp 359–380. Wiley, New YorkGoogle Scholar
  25. Massonnet D, Feigl K (1998) Radar interferometry and its applications to changes in the earth’s surface. Rev Geophys 36(4):441–500CrossRefGoogle Scholar
  26. Massonnet D, Rossi M, Carmona C, Adranga F, Peltzer G, Feigl K, Rabaute T (1993) The displacement field of the Landers earthquake mapped by radar interferometry. Nature 364:138–142CrossRefGoogle Scholar
  27. Massonnet D, Briole P, Arnaud A (1995) Deflation of Mount Etna monitored by spaceborne radar interferometry. Nature 375:567–570CrossRefGoogle Scholar
  28. Oveisgharan S, Zebker HA (2007) Estimating snow accumulation from InSAR correlation observations. IEEE Trans Geosci Remote Sens 45(1):10–20CrossRefGoogle Scholar
  29. Papathanassiou KP, Cloude SR (2001) Single-baseline polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens 39(11):2352–2363CrossRefGoogle Scholar
  30. Puglisi G, Coltelli M (1998) SAR interferometry applications on active vo1canoes: state of the art and perspectives for volcano monitoring. In: Workshop synthetic aperture radar, 25–26 February 1998, Florence, ItalyGoogle Scholar
  31. Rocca F, Prati C, Feretti (1997) An overview of ERS-SAR interferometry. In: 3rd ERS symposium, space at the service of our environment, vol I, pp xxvii–xxxvi. Florence, 17–21 March, 1997, ESA-SP414. http://florence97.erssymposium.org
  32. Rosen PA, Hensley S, Joughin IR, Li F, Madsen SN, Rodriguez E, Goldstein RM (1999) Synthetic aperture radar interferometry. Proc IEEE XX(Y):1–110Google Scholar
  33. Sharma JJ, Hajnsek I, Papathanassiou KP (2007) Vertical profile reconstruction with Pol-InSAR data of a subpolar glacier. In: Proceedings of IEEE international geoscience remote sensing symposium (IGARSS), Barcelona, Spain, 2007Google Scholar
  34. Sun Q, Zhang L, Ding X, Hu J, Liang H (2015) Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: a case study of Oso, USA. Remote Sens 7:72–88CrossRefGoogle Scholar
  35. Zebker HA, Goldstein RM (1986) Topographic mapping from interferometry synthetic aperture radar observations. J Geophys Res 91(B5):4993–4999CrossRefGoogle Scholar
  36. Zebker HA, Werner CL, Rosen PA, Hensley S (1994) Mapping the world's topography with radar interferometry. Proc IEEE 82(12):1774–1786Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Formerly Professor, Earth Resources Technology, Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations