Imaging Spectroscopy

  • Ravi P. Gupta


Imaging spectroscopy can be defined as acquisition of images in hundreds of contiguous, registered, spectral bands such that for each pixel a radiance spectrum can be derived. The basic concepts and general terminology such as continuum and depth of absorption have been adapted from spectroscopy. Various high resolution spectral features of minerals studied in laboratory form the backbone of imaging spectrometry data interpretation. A number of aerial imaging spectrometer sensors have been flown by different countries.


  1. Baldridge AM, Hook SJ, Grove CI, Rivera G (2009) The ASTER spectral library version 2.0. Remote Sens Environ 113:711–715CrossRefGoogle Scholar
  2. Bierwirth P, Huston D, Blewett R (2002) Hyperspectral mapping of mineral assemblages associated with gold mineralization in the Central Pilbara, Western Australia. Econ Geol 97:819–826CrossRefGoogle Scholar
  3. Bishop CA, Liu JG, Mason PJ (2011) Hyperspectral remote sensing for mineral exploration in Pulang, Yunnan Province China. Int J Remote Sens 32(9):2409–2426CrossRefGoogle Scholar
  4. Campbell NA (1996) The decorrelation stretch transform. Int J Remote Sens 17:1939–1949CrossRefGoogle Scholar
  5. Clark RN (1999) Spectroscopy of rocks and minerals, and principles of spectroscopy. In: Rencz AN (ed) Remote sensing for the Earth sciences, manual of remote sensing, vol 3, 3rd edn. Am Soc Photogramm Remote Sens. Wiley, London, pp 3–58Google Scholar
  6. Chang SH, Collins W (1983) Confirmation of the airbome biogeophysical mineral exploration technique using laboratory methods. Econ Geol 78:723–736CrossRefGoogle Scholar
  7. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340CrossRefGoogle Scholar
  8. Clark RN, King TVV, Klejwa M, Swayze G, Vergo N (1990a) High spectral resolution reflectance spectroscopy of minerals. J Geophys Res 95:12653–12680CrossRefGoogle Scholar
  9. Clark RN, Gallagher AJ, Swayze GA (1990b) Material absorption band depth mapping of imaging spectrometer data using complete band shape least-squares bit with library reference spectra. In: Proceedings 2nd airborne visible infrared imaging spectrometer (AVIRIS) workshop, JPL Publ 90–54, Jet propulsion Laboratory, California Inst Tech, Pasadena, CA, pp 176–186Google Scholar
  10. Dickerhof C et al (1999) Mineral identification and lithological mapping on the Island of Naxos (Greece) using DIAS 7915 hyperspectral data. EARSeL Adv Remote Sens 1(1):255–273Google Scholar
  11. Farrand WH, Harsanyi JC (1997) Mapping the distribution of mine tailings in the Coeur d’ Alene River valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens Environ 59:64–76CrossRefGoogle Scholar
  12. Goetz AFH, Vane G, Solomon J, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228:1147–1153CrossRefGoogle Scholar
  13. Green RO (1992) Determination of the in-flight spectral and radiometric characteristics of the airborne visible/infrared imaging spectrometer (A VIRIS). In: Toselli F, Bodechtel J (eds) Imaging spectrometry: fundamentals and prospective applications. Kluwer, Dordrecht, pp 103–123Google Scholar
  14. Green AA, Berman M, Switzer P, Graig MD (1988) A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans Geosci Remote Sens 26:65–74CrossRefGoogle Scholar
  15. Goetz AFH (2009) Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens Environ 113:S5–S16CrossRefGoogle Scholar
  16. Goetz AFH, Rowan LC (1981) Geologic remote sensing. Science 211:781–791Google Scholar
  17. Goetz AFH, Srivastava V (1985) Mineralogic mapping in the Cuprite mining district, Nevada. In: Proceedings of the airborne imaging spectrometer data analysis workshop. JPL Publ 85–41, Jet Propulsion Laboratory, Pasadena, CA, pp 22–31Google Scholar
  18. Hoefen TM, Knepper DH Jr, Giles SA (2011) Analysis of imaging spectrometer data for the Daykundi area of interest. In: Peters SG et al (eds) Summaries of Important areas for mineral investment and production opportunities of nonfuel minerals in Afghanistan. US Geological Survey, Reston, Virginia, pp 314–339Google Scholar
  19. Ichoku C, Karnieli A (1996) A review of mixture modeling teehniques for sub-pixel land cover estimation. Remote Sens Rev 13:161–186CrossRefGoogle Scholar
  20. Jensen RR, Yang C (2009) Hyperspectral remote sensing—Sensors and applications. In: Jackson MW (ed) Earth observing platforms and sensors, manual of remote sensing 3rd ed. Vol. 1.1, Amer Soc Photog Remote Sens (ASPRS), Bethesda, Md., pp 205–224Google Scholar
  21. Johnson PE, Smith MO, Taylor-George S, Adams JB (1983) A semiempricial method for analysis of the ref1ectance spectra of binary mineral mixtures. J Geophys Res 88(B4):3557–3561CrossRefGoogle Scholar
  22. Kokaly RF et al (2017) USGS Spectral Library Version 7: U.S. geological survey data series 1035, 61 p,
  23. Kruse FA (1997) Characterization of active hot-springs environments using multispectral and hyperspectral remote sensing. In: Proceedings 12th International Conference and Workshops on applied Geologic Remote Sensing, Vol I, Env Res lust Michigan, Ann Arbor, Mich, pp 214–221Google Scholar
  24. Kruse FA, Calvin WM, Seznec O (1988) Automated extraction of absorption features from airborne visible/infrared imaging spectrometer (A VIRIS) and Geophysical Environmental Research imaging spectrometer (GERIS) data. In: Proc A VIRIS Performance Evaluation Workshop, JPL Publ 88-38, Jet Propulsion Laboratory, California lust Tech, Pasadena, CA, pp 62–75Google Scholar
  25. Kruse FA, Kierein-Young KS, Boardman JW (1990) Mineral mapping at cuprite, Nevada with a 63-channel imaging spectrometer. Photogram Eng Remote Sens 56(1):83–92Google Scholar
  26. Kruse FA, Letkoff AB, Boardman JW, Heidebrecht KB, Shapiro AT, Barloon PJ, Goetz AFH (1993) The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data. Remote Sens Environ 44:145–163CrossRefGoogle Scholar
  27. Kusuma KN, Ramakrishnan D, Pandalai HS (2012) Spectral pathways for effective delineation of high-grade bauxites: a case study from the Savitri River Basin, Maharashtra, India, using EO-1 Hyperion data. Int J Remote Sens 33(22):7273–7290CrossRefGoogle Scholar
  28. Meyer P (1994) A parametric approach for the geocoding of airborne visible/lnfrared lmaging spectrometer (AVIRIS) data in rugged terrain. Remote Sens Environ 49:118–130CrossRefGoogle Scholar
  29. Mustard JF, Sunshine JM (1999) Spectral analysis for Earth science: investigations using remote sensing data. In: Rencz AN (ed) Remote sensing for the earth sciences, manual of remote sensing, vol 3, 3rd edn. Am Soc Photogramm Remote Sens. Wiley, New York, pp 251–306Google Scholar
  30. Ramakrishnan D, Bharti R (2015) Hyperspectral remote sensing and geological applications. Curr Sci 108(5):879–891Google Scholar
  31. Rast M, Hook SJ, Elvidge CD, Alley RE (1991) An evaluation of techniques for the extraction of mineral absorption features from high spectral resolution remote sensing data. Photogram Eng Remote Sens 57:1303–1309Google Scholar
  32. Salisbury JW, Walter LS, Vergo N, D’Aria DM (1991) Infrared (2.1–2.5 µm) Spectra of Minerals. Johns Hopkins University Press, Baltimore, pp 1–267Google Scholar
  33. Shang JL, Morris B, Howarth P, Levesque J, Staenz K, Neville B (2009) Mapping mine tailing surface mineralogy using hyperspectral remote sensing. Canad J Remote Sens 35:S126–S141CrossRefGoogle Scholar
  34. Thenkabail PS, Lyon JG, Huete A (eds) (2012) Hyperspectral remote sensing of vegetation, CRC press. Taylor & Francis, FloridaGoogle Scholar
  35. Thompson AJB, Thompson JFH (1996) Atlas of alteration: a field and petrographic guide to hydrothermal alteration minerals. Geological Association of Canada, Mineral Deposits Division, p. 119Google Scholar
  36. Van Der Meer FD et al (2012) Multi- and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14:112–128CrossRefGoogle Scholar
  37. Vane G, Goetz AFH (1988) Terrestrial imaging spectroscopy. Remote Sens Environ 24:129CrossRefGoogle Scholar
  38. van der Meer F, Bakker W (1997) CCSM: cross correlogram spectral matching. Int J Remote Sens 18:1197–1201CrossRefGoogle Scholar
  39. van der Meer F, Bakker W (1998) Validated surface mineralogy from high-spectral resolution remote sensing: a review and a novel approach applied to gold exploration using AVIRIS data. Terra Nova 10:112–119CrossRefGoogle Scholar
  40. van der Meer FD, de Jong SM (2001) Imaging spectrometry: basic analytical techniques. In imaging spectrometry: basic principles and prospective applications. Springer, DordrechtGoogle Scholar
  41. Vane G, Goetz AFH, Wellman JB (1983) Airborne imaging spectrometer: a new tool for remote sensing. In: Proceedings of the IEEE international geoscience remote sensing symposium (IGARSS) F A-4:6.1–6.5Google Scholar
  42. Van Ruitenbeek FJA, Cudahy TJ, Van der Meer FD, Hale M (2012) Characterization of the hydrothermal systems associated with Archean VMS-mineralization at Panorama, Western Australia, using hyperspectral, geochemical and geothermometric data. Ore Geol Rev 45:33–46CrossRefGoogle Scholar
  43. Vane G, Green RO, Chrien TG, Enmark HT, Hansen EG, Porter (1993) The airborne visible infrared imaging spectrometer (AVIRIS). Remote Sens Environ 44:127–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Formerly Professor, Earth Resources Technology, Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations