Digital Image Processing of Multispectral Data

Chapter

Abstract

Digital image processing deals with the technique of implementing changes in remote sensing data pattern for specific purposes. It can be carried out for a number of purposes such as: radiometric image correction, geometric image correction, image registration, image enhancement, image filtering, image transformation, colour enhancement, image fusion, 2.5 Dimensional visualization, image segmentation and classification.

References

  1. Arora MK, Mathur S (2001) Multi-source image classification using neural network in a rugged terrain. Geocarto Int 16(3):37–44CrossRefGoogle Scholar
  2. Arora MK, Shukla A, Gupta RP (2011) Digital information extraction techniques for snow cover mapping from remote sensing data. In: Singh VP, Singh P, Haritashya UK (eds) Encyclopedia of snow, ice and glacier. Springer, Dordrecht, pp 213–232 Google Scholar
  3. Benz UC, Hofmann P, Willhauck G, Lingenfelder I, Heynen M (2004) Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS J Photogram Remote Sens 58:239–258CrossRefGoogle Scholar
  4. Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. Comp Geosci 10:191–203CrossRefGoogle Scholar
  5. Blaschke T (2010) Object based image analysis for remote sensing, ISPRS J Photogram Remote Sens 65(1):2–16. ISSN 0924-2716. http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004
  6. Boardman JW, Kruse FA, Green RO (1995) Mapping target signatures via partial unmixing of AVIRIS data. In: Proceedings of Fifth JPL airborne earth science workshop, summaries, Pasadena, California, vol 1. JPL Publication 95–1, pp 23–26, 23–26 Jan 1995Google Scholar
  7. Buchanan MD (1979) Effective utilization of colour in multidimensional data presentation. Proc Soc Photo Opt Instrument Eng 199:9–19Google Scholar
  8. Buchanan MD, Pendgrass R (1980) Digital image processing: can intensity hue and saturation replace red, green and blue? Electro-Opt Syst Design 12(3):29–36Google Scholar
  9. Byrne GF, Crapper PF, Mayo KK (1980) Monitoring land-cover change by principal component analysis of multitemporal Landsat data. Remote Sens Environ 10:175–189CrossRefGoogle Scholar
  10. Campbell NA (1996) The decorrelation stretch transform. Int J Remote Sens 17:1939–1949CrossRefGoogle Scholar
  11. Carper WJ, LilIesand TM, Kiefer RW (1990) The use of intensity-hue-saturation transformations for merging SPOT panchromatic and multispectral image data. Photogramm Eng Remote Sens 56(4):459–467Google Scholar
  12. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric coefficients for Landsat MSS, TM, ETM+, and EO-1 OLI sensors. Rem Sens Environ 113:893–903CrossRefGoogle Scholar
  13. Chikara RS (1984) Effect of mixed pixels on crop proportion estimation. Remote Sens Environ 14:207–218CrossRefGoogle Scholar
  14. Condit CD, Chavez PS (1979) Basic concepts of computerised digital image processing for geologists. US Geol Surv Bull No. 1462, US Govt Printing Office, Washington DC, 16pGoogle Scholar
  15. Congalton RG (1991) A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens Environ 37:35–46CrossRefGoogle Scholar
  16. Congalton RG, Green K (1993) A practical look at the sources of confusion in error matrix generation. Photogram Eng Remote Sens 59:641–644Google Scholar
  17. Crane RB (1971) Preprocessing techniques to reduce atmospheric and sensor variability in multispectral scanner data. In: Proceedings of 7th international symposium on remote sensing of environment, vol II. Ann Arbor, MI, pp 1345–1355Google Scholar
  18. Crosta AP, Moore JM (1989) Enhancement of Landsat Themetic Mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: a prospecting case history in Greenstone Belt Terrain. In: Proceedings of 7th thematic conference on remote sensing for exploration geology, Calgary, pp 1173–1187, 2–6 October 1989Google Scholar
  19. Curran PJ (1985) Principles of remote sensing. Longman, LondonGoogle Scholar
  20. Daily MI (1983) Hue-saturation-intensity split-spectrum processing of Seasat radar imagery. Photogramm Eng Remote Sens 49:349–355Google Scholar
  21. Davis LS (1975) A survey of edge detection techniques. Computer Graphics Image Proc-essing 4:248–270CrossRefGoogle Scholar
  22. Davis JC (1986) Statistics and data analysis in geology, 3rd edn. Wiley, New York, p 646Google Scholar
  23. Drury SA (2004) Image interpretation in geology, 3rd edn. Blackwell Sciences, Malden, p 304Google Scholar
  24. Evans C, Jones R, Svalbe I, Berman M (2002) Segmenting multispectral Landsat TM images into field units. IEEE Trans Geosci Remote Sens 40(5):1054–1064CrossRefGoogle Scholar
  25. Farag AA (1992) Edge-based image segmentation. Remote Sens Rev 6:95–122CrossRefGoogle Scholar
  26. Fisher PF, Pathirana S (1990) The evaluation of fuzzy membership of land cover classes in the suburb an zone. Remote Sens Environ 34:121–132CrossRefGoogle Scholar
  27. Foody GM (1992) A fuzzy sets approach to representation ofvegetation continua from remotely sensed data: an example from Lowland heath. Photogram Eng Remote Sens 58:221–225Google Scholar
  28. Foody GM (1995) Land cover classification by an artificial neural network with ancillary information. Int J Geog Inform Sys 9:527–542CrossRefGoogle Scholar
  29. Foody GM (1998) Sharpening fuzzy classification output to refine the representation of sub-pixel land cover distribution. Int J Remote Sens 19(13):2593–2599CrossRefGoogle Scholar
  30. Foody GM, Arora MK (1996) Incorporating mixed pixels in the training, allocation and testing stages of supervised classifications. Pattern Recog Lett 17:1389–1398CrossRefGoogle Scholar
  31. Gillespie AR (1980) Digital techniques of image enhancement. In: Seigal BS, Gillespie AR (eds) Remote sensing in geology. Wiley, New York, pp 139–226Google Scholar
  32. Gillespie AR, Kahle AB, Walker RE (1986) Color enhancement of highly correlated images: I-decorrelation and HIS contrast stretches, Remote Sens Environ 20:209–235Google Scholar
  33. Gillespie AR, Kahle AB, Walker RE (1987) Colour enhancement of highly correlated images: II-channel ratio and chromaticity transformation techniques. Remote Sens Environ 22:343–365CrossRefGoogle Scholar
  34. Gonzales RC, Woods RE (2008) Digital image processing, 3rd edn. Addison Wesley, ReadingGoogle Scholar
  35. Gupta RP (2003) Remote sensing geology, 2nd edn. Springer, Berlin, 655 pGoogle Scholar
  36. Gupta RP, Tiwari RK, Saini V, Srivastava N (2013) A simplified approach for interpreting principal component images. Adv Remote Sens 2:111–119CrossRefGoogle Scholar
  37. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67:786–804CrossRefGoogle Scholar
  38. Haralick RM, Fu K (1983) Pattern recognition and classification. In: Colwell RN (ed) Manual of remote sensing. American Society of Photogrammetry and Remote Sensing, Falls Church, VA, pp 793–805Google Scholar
  39. Harris JR, Murray R, Hirose T (1990) IHS transform for the integration of radar imagery and other remotely sensed data. Photogramm Eng Remote Sens 56:1631–1641Google Scholar
  40. Harris JR, David WV, Andrew NR (1999) Integration and visualization of geoscience data. In: Remote sensing for the earth sciences, manual of remote sensing, 3rd edn, vol 3. Am Society for Photogrammetry and Remote Sensing, pp 307–354Google Scholar
  41. Haydn R (1985) A concept for the processing and display of Thematic Mapper data. In: Proceedings of symposium on Landsat-4 science characterization early results. NASA publ 2355 Greenbelt, MD, pp 217–237Google Scholar
  42. Haydn R, Dalke GW, Henkel J, Bare JE (1982) Application ofthe IHS colour transform to the processing of multi sensor data and image enhancement. Proc Int Symp Remote Sens of Arid and Semi-Arid Lands, Cairo, pp 599–616Google Scholar
  43. Hepner GF, Logan T, Ritter N, Bryant N (1990) Artificial neural network classification using a minimal training set: comparison to conventional supervised classification. Photogramm Eng Remote Sens 56:469–473Google Scholar
  44. Hill J (1991) A quantitative approach to remote sensing: sensor calibration and comparison. In: Belward AS, Valenzuela CR (eds), pp 97–110Google Scholar
  45. Hord RM (1982) Digital image processing of remotely sensed data. Academic Press, New York, p 256Google Scholar
  46. Hsu S (1978) Texture-tone analysis for automated landuse mapping. Photogramm Eng Remote Sens 44:1393–1404Google Scholar
  47. Hu X, Tao CV, Prenzel B (2005) Automatic segmentation of high-resolution satellite imagery by integrating texture, intensity and colour features. Photogramm Eng Remote Sens 71(12):1399–1406CrossRefGoogle Scholar
  48. Jensen JR (2005) Introductory digital image processing, 3rd edn. Prentice Hall, Englewood Cliffs, 379 pGoogle Scholar
  49. Justice C, Wharton SW, Holben BN (1981) Application of digital terrain data to quantify and reduce the topographic effect on Landsat data. Int J Remote Sens 2:213–230CrossRefGoogle Scholar
  50. Kahle AB (1980) Surface thermal properties. In: Siegal BS, Gillespie AR (eds) Remote sensing in geology. Wiley, New York, pp 257–273Google Scholar
  51. Key JR, Maslanik JA, Barry RG (1989) Cloud classification from satellite data using a fuzzy set algorithm: a polar example. Int J Remote Sens 10:1823–1842CrossRefGoogle Scholar
  52. Kowalik WS, Lyon RJP, Switzer P (1983) The effects of additive radiance terms on ratios of Landsat data. Photogram Eng Remote Sens 49:659–669Google Scholar
  53. Lillesand TM, Kiefer RW (1987) Remote sensing and image interpretation, 2nd edn, Wiley, New York, 721 ppGoogle Scholar
  54. Loughlin WP (1991) Principal component analysis for alteration mapping. Photogram Eng Remote Sens 57(9):1163–1169Google Scholar
  55. Maselli F, Conese G, Petkov L, Resti R (1992) Inclusion of prior probabilities derived from a nonparametric proeess into the maximum likelihood classifier. Photogramm Eng Remote Sens 58:201–207Google Scholar
  56. Mather PM (2010) Computer proeessing of remotely sensed images, an introduction, 2nd edn. Wiley, ChicesterGoogle Scholar
  57. Mertens KC, Verbeke LPC, Westra T, De Wulf RR (2004) Subpixel mapping and sub-pixel sharpening using neural network predicted wavelet coefficients. Remote Sens Environ 91:225–236CrossRefGoogle Scholar
  58. Moik JG (1980) Digital processing of remotely sensed images. NASA SP-431, US Govt Printing Office, Washington, DCGoogle Scholar
  59. Pal NR, Pal SK (1993) A review of image segmentation techniques. Pattern Recogn 26(9):1277–1294CrossRefGoogle Scholar
  60. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36CrossRefGoogle Scholar
  61. Peli T, Malah D (1982) A study of edge detection algorithms. Comput Graph Image Process 20:1–21CrossRefGoogle Scholar
  62. Pichel W, Bristor CL, Brower R (1973) Artificial stereo: a technique for combining multichannel satellite image data. Bull Am Meteorol Soc 54:688–690Google Scholar
  63. Pohl C, van Genderen JL (1998) Multisensor image fusion in remote sensing: concepts, methods and application. Int J Remote Sens 19:823–854CrossRefGoogle Scholar
  64. Pour AB, Hashim M (2011) Spectral transformation of ASTER data and the discrimination of hydrothermal alteration minerals in a semi-arid region, SE Iran. Int J Phys Sci 6(8):2037–2059Google Scholar
  65. Pratt WK (2007) Digital image processing, 4th edn. Wiley, New YorkCrossRefGoogle Scholar
  66. Prost GL (2013) Remote sensing for geoscientists, 3rd edn. CRC Press, 702 pGoogle Scholar
  67. Radoux J, Defourny P (2007) A quantitative assessment of boundaries in automated forest stand delineation using very high resolution imagery. Remote Sens Environ 110(4):468–475CrossRefGoogle Scholar
  68. Richards JA, Jia X (2006) Remote sensing digital image analysis, 4th edn, Springer, Heidelberg, 363 pGoogle Scholar
  69. Rosenfeld A, Kak AC (1982) Digital picture processing, 2nd edn. Academic Press, OrlandoGoogle Scholar
  70. Ruiz-Armenta JR, Prol-Ledesma RM (1998) Techniques for enhancing the spectral reponse of hydrothermal alteration minerals in Thematic Mapper images of Central Mexico. Int J Remote Sens 19(10):1981–2000CrossRefGoogle Scholar
  71. Russ JC (2011) The image processing handbook, 6th edn. CRC Press, Boca RatonGoogle Scholar
  72. Sabins FF Jr (2007) Remote sensing: principles and interpretation, 4th edn. Waveland Press, Long Grove, p 512Google Scholar
  73. Sawchuka AA (1978) Artificial stereo. App Optics 17:3869–3873CrossRefGoogle Scholar
  74. Schalkoff RJ (1992) Pattern recognition: statistical. Wiley, New YorkGoogle Scholar
  75. Schowengerdt RA (2007) Remote sensing: models and methods for image processing, 3rd edn. Academic Press, San DiegoGoogle Scholar
  76. Settle JJ, Drake NA (1993) Linear mixing and the estimation of ground cover proportions. Int J Remote Sens 14:1159–1177CrossRefGoogle Scholar
  77. Shaw GB (1979) Local and regional edge detectors: some comparisons. Comput Graph Image Process 9:135–149CrossRefGoogle Scholar
  78. Siegal BS, Abrams MJ (1976) Geologic mapping using Landsat data. Photogram Eng Remote Sens 42:325–337Google Scholar
  79. Strahler AH (1980) The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sens Environ 10:135–163CrossRefGoogle Scholar
  80. Swain PH (1978) Fundmentals of pattern recognition in remote sensing. In: Swain PH, Davis SM (eds) Remote sensing: the quantitative approach. Mcgraw Hill, New York, pp 136–187Google Scholar
  81. Tangestani MH, Moore F (2002) Porphyry copper alteration mapping at the Meiduk Area. Iran, Int J Rem Sens 23(22):4815–4825CrossRefGoogle Scholar
  82. Tatem AJ, Hugh G, Atkinson PM, Nixon MS (2002) Superresolution land cover pattern prediction using a Hopfield neural network. Remote Sens Environ 79:1–14CrossRefGoogle Scholar
  83. Tauch R, Kähler M (1988) Improving the quality of satellite images maps by various processing techniques. In: International Archives of Photogrammetry Remote Sensing. Proceedings of XVI ISPRS Congress, Tokyo, Japan, pp IV238–IV247Google Scholar
  84. Thomas IL, Howorth R, Eggers A, Fowler ADW (1981) Textural enhancement of a circular geological feature. Photogram Eng Remote Sens 47:89–91Google Scholar
  85. Thome KJ, Gellman DI, Parada RJ, Biggar SF, Slater PN, Moran MS (1993) Absolute radiometric calibration of Thematic Mapper. SPIE Proc 600:2–8Google Scholar
  86. Tom Ch, Miller LD (1984) An automated land-use mapping comparison of the Bayesian maximum likelihood and linear discriminant analysis algorithms. Photogram Eng Remote Sens 50:193–207Google Scholar
  87. Verhoeye J, Wulf RD (2002) Land cover mapping at sub-pixel scales using linear optimization techniques. Remote Sens Environ 79:96–104CrossRefGoogle Scholar
  88. Vincent RK (1997) Fundamentals of geological and environmental remote sensing. Prentice Hall, Englewood CliffsGoogle Scholar
  89. Wahi M, Taj-Eddine K, Laftouhi N (2013) ASTER VNIR & SWIR band enhancement for lithological mapping—a case study of the Azegour area (Western High Atlas, Morocco). J Environ Earth Sci 3(12):33–44Google Scholar
  90. Wang F (1990) Fuzzy supervised classification of remote sensing images. IEEE Trans Geo-sci Remote Sens 28:194–201CrossRefGoogle Scholar
  91. Welch R, Ehlers M (1987) Merging multiresolution SPOT HRV and Landsat TM data. Photogram Eng Remote Sens 53(3):301–303Google Scholar
  92. Wyszecki G, Stiles WS (1967) Color science. Wiley, New YorkGoogle Scholar
  93. Zhang H, Yang Z, Zhang L, Shen H (2014) Super-resolution reconstruction for multi-angle remote sensing images considering resolution differences. Remote Sens 6:637–657. doi: 10.3390/rs6010637 CrossRefGoogle Scholar
  94. Zhou Z, Civco DL, Silander JA (1998) A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int J Remote Sens 19:743–757CrossRefGoogle Scholar
  95. Zobrist AL, Blackwell RJ, Stromberg WD (1979) Integration of Landsat, Seasat and other geo-data sources. In: Proceedings of 13th international symposium on remote sensing environment, Ann Arbor, MI, pp 271–279Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Formerly Professor, Earth Resources Technology, Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations