Interpretation of Thermal-IR Data

  • Ravi P. Gupta


The EM wavelength region of 3−35 µm is popularly called the thermal-infrared region in terrestrial remote sensing. Out of the 3−35 µm wavelength region, the greatest interest has been in the 8−14 μm range. The energy radiated by ground objects depends upon surface temperature and emissivity. Out of the various thermal properties, thermal inertia is the most important property that governs the diurnal surface temperature variation. Therefore, thermal data are processed to generate thermal inertia images. These have applications in a wide range of geologic purposes (structure, lithology, groundwater etc.). Thermal data can be used to estimate ground temperature and map typical “hot” features such as volcanic eruptions, coal mine fires etc. Multispectral thermal – IR sensing aims at delineating different rock types based on emissivity differences.


  1. Abrams MJ, Kahle AB, Palluconi FD, Jp Schieldge (1984) Geologic mapping using thermal images. Remote Sens Environ 16:13–33CrossRefGoogle Scholar
  2. Barsi JA, Schott JR, Palluconi FD, Helder DL, Hook SJ, Markham BL, Chander G, O'Donnell EM (2003) Landsat TM and ETM+ thermal band calibration. Can J Remote Sens 29(2):141−153Google Scholar
  3. Becker F, Li ZL (1995) Surface temperature and emissivity at various scales—definition, measurement, and related problems. Remote Sens Rev 12:225–253CrossRefGoogle Scholar
  4. Blackett M (2017) An overview of infrared remote sensing of volcanic activity. J Imaging 3:13.
  5. Bonn FJ (1977) Ground truth measurements for thermal infrared remote sensing. Photogramm Engg Remote Sens 43:1001–1007Google Scholar
  6. Byrne GF, Davis JR (1980) Thermal inertia, thermal admittance and the effect of layers. Remote Sens Environ 9:295–300CrossRefGoogle Scholar
  7. Carlsaw HS, Jaegar JC (1959) Conduction of heat in solids, 2nd edn. Oxford Univ Press, New YorkGoogle Scholar
  8. Chander G, Markham BL, Helder DL (2009) Summary of current radiometric coefficients for Landsat MSS, TM, ETM+, and EO-1 OLI sensors. Rem Sens Environ 113:893–903CrossRefGoogle Scholar
  9. Crowley JK, Hook SJ (1996) Mapping playa evaporite minerals and associated sediments in Death Valley, California, with multispectral thermal images. J Geophys Res 99B:643–660CrossRefGoogle Scholar
  10. Cudahy TJ, Connor PM, Hausknecht P, Hook SJ, Huntington JF, Kahle AB, Phillips RN, Whitboum LB (1994) Airborne CO2 laser spectrometer and TIMS TIR data for mineral mapping in Australia. In: Proceedings 7th Australian Remote Sensing Conference, Melbourne, Victoria, Australia, March 1–4, pp 918–924Google Scholar
  11. Dancak C (1979) Temperature calibration of test infrared scanner. Photogramm Eng Remote Sens 45:749–751Google Scholar
  12. Ellyett CD, Pratt DA (1975) A review of the potential applications of remote sensing techniques to hydrogeological studies in Australia. Australian Water Resources Council Technical paper No 13, 147 ppGoogle Scholar
  13. Gillespie AR, Kahle AB (1977) Construction and interpretation of a digital thermal inertia image. Photogram Eng Remote Sens 43:983–1000Google Scholar
  14. Gillespie AR, Rokugawa S, Matsunga T, Cothern S, Hook S, Kahle AB (1998) A temperature emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans Geosci Remote Sens 36(4):1113–1126CrossRefGoogle Scholar
  15. Hook SJ, Gabell AR, Green AA, Kealy PS (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens Environ 42:123–135CrossRefGoogle Scholar
  16. Janza FJ (1975) Interaction mechanisms. In: Reeves RG (ed) Manual of remote sensing. Ist edn, Am Soc Photogramm, Falls Church, VA, pp 75–179Google Scholar
  17. Kahle AB (1977) A simple thermal model of the Earth’s surface for geologic mapping by remote sensing. J Geophys Res 82:1673–1690CrossRefGoogle Scholar
  18. Kahle AB (1980) Surface thermal properties. In: Siegal BS, Gillespie AR (eds) Remote sensing in geology. Wiley, New York, pp 257–273Google Scholar
  19. Kahle AB, Goetz AFH (1983) Mineralogic information from a new airborne thermal infra-red multispectral scanner. Science 222:24–27CrossRefGoogle Scholar
  20. Kahle AB, Rowan LC (1980) Evaluation of multispectral middle infrared aircraft images for lithologic mapping in the East Tintic Mountains, Utah. Geology 8:234–239CrossRefGoogle Scholar
  21. Kahle AB, Gillespie AR, Goetz AFH (1976) Thermal inertia imaging: a new geologic mapping tool. Geophys Res Lett 3:26–28CrossRefGoogle Scholar
  22. Kahle AB, Madura DP, Soha JM (1980) Middle infrared multispectral aircraft scanner data: analysis for geological applications. Appl Opt 19:2279–2290CrossRefGoogle Scholar
  23. Kahle AB, Shumate MS, Nash DB (1984) Active airborne infrared laser system for identification of surface rock and minerals. Geophys Res Lett 11:1149–1152CrossRefGoogle Scholar
  24. Kealy PS, Hook SJ (1993) Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures. IEEE Trans Geosc Remote Sens 31(6):1155–1164CrossRefGoogle Scholar
  25. Lockwood JP, Lipman PW (1987) Holocene eruptive history of Mauna Loa volcano. In: Decker RW, Write TL, Stauffer PH (eds) Volcanism in Hawaii. Vol l, USGS Prof Pap 1350, U S Geol Surv, Washington DC, pp 509–535Google Scholar
  26. Lyon RJP, Patterson JW (1966) Infrared spectral signatures -a field geological tool. In: Proceedings 4th International Symposia Remote Sensing Environmental, Ann Arbor, MI, pp 215–220Google Scholar
  27. Markham BL, Barker JL (1986) Landsat MSS and TM post-calibration dynamic ranges, exoatmospheric reflectances and at-satellite temperatures. EOSAT Technical Notes 1:3–8Google Scholar
  28. Marsh SE, Sehieldge JP, Kahle AB (1982) An instrument for measuring thermal inertia in the field. Photogramm Eng Remote Sens 48:605–607Google Scholar
  29. Matson M, Dozier J (1981) Identifieation of subresolution high temperature sources using a thermal infrared sensor. Photogramm Eng Remote Sens 47(9):1311–1318Google Scholar
  30. Miller SH, Watson K (1977) Evaluation of algorithms for geological thermal inertia mapping. Proceedings of the 11th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, pt2, pp 1147–1160Google Scholar
  31. Oppenheimer C, Francis PW, Rothery DA, Carlton RW, Glaze LS (1993) Infrared image analysis of volcanic thermal features: Volcano Lascar, Chile, 1984–1992. J Geophys Res 98:4269–4286CrossRefGoogle Scholar
  32. Prakash A, Gupta RP (1999) Surface fires in the Jharia coalfield, India—their distribution and estimation of area and temperature from TM data. Int J Remote Sens 20(10):1935–1946CrossRefGoogle Scholar
  33. Prata AJ (1995) Thermal remote sensing of land surfaces temperature from satellites: current status and future prospects. Remote Sens Rev 12:175–224CrossRefGoogle Scholar
  34. Price JC (1977) Thermal inertia mapping: a new view of the Earth. J Geophys Res 81:2582–2590CrossRefGoogle Scholar
  35. Quattrochi DA, Luvall JC (eds) (2004) Thermal remote sensing in land surface processes. CRC Press, Boca Raton, FL, p 440Google Scholar
  36. Quattrochi DA et al (2009) Thermal remote sensing: theory, sensors and applications. In: Jackson MW (ed) Earth observing platforms and sensors, manual of remote sensing 3rd edn. Vol. 1.1, Amer Soc Photog Remote Sens (ASPRS), Bethesda, Md., pp 107–187Google Scholar
  37. Reeves RG (1968) Introduction to electromagnetic remote sensing with emphasis on applications to geology and hydrology. Am Geol. Ins, Washington, DCGoogle Scholar
  38. Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength IR data from satellites. J Geophys Res 93(B7):7993–8008CrossRefGoogle Scholar
  39. Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensor 14:5768–5780CrossRefGoogle Scholar
  40. Sabine C, Realmuto VJ, Taranik JV (1994) Quantitative estimation of granitoid composition from thermal infrared multispectral scanner (TIMS) data, desolation Wilderness, northern Sierra Nevada, California. J Geophys Res 99(B3):427l–4261CrossRefGoogle Scholar
  41. Sabins FF Jr (1969) Thermal infrared imagery and its application to structural mapping in southem Califomia. Geol Soc Am Bull 80:397–404CrossRefGoogle Scholar
  42. Sabins FF Jr (1987) Remote sensing principles and interpretation. 2nd edn, Freeman, San Francisco, 449 ppGoogle Scholar
  43. Sabins FF Jr (1997) Remote sensing-principles and interpretation, 3rd edn. Freeman & Co, NYGoogle Scholar
  44. Scarpace FL, Madding RP, Green T III (1975) Scanning thermal plumes. Photogram Eng 41:1223–1231Google Scholar
  45. Schott JR (1989) Image processing of thermal infrared images. Photogram Eng Remote Sens 55(9):1311–1321Google Scholar
  46. Schroeder W, Oliva P, Giglio L, Quayle B, Lorenz E, Morelli F (2016) Active fire detection using Landsat-8/OLI data. Remote Sens Environ 185:210–220CrossRefGoogle Scholar
  47. Short NM, Stuart LM Jr (1982) The heat capacity mapping mission (HCMM) Anthology. NASA SP-465, US Govt Printing Office, Washington, DC, 264pGoogle Scholar
  48. Urai M (2000) Volcano monitoring with Landsat TM short-wave infrared bands: the 1990–1994 eruption of Unzen Volcano. Japan. Int J Remote Sens 21(5):861–872CrossRefGoogle Scholar
  49. Urai M, Fukui K, Yamaguchi Y, Pieri DC (1999) Volcano observation potential and global volcano monitoring plan with ASTER. Volcanological Society of Japan 44(3):131–141 (in Japanese)Google Scholar
  50. Vlcek J (1982) A field method for determination of emissivity with imaging radiometers. Photogram Eng Remote Sens 48:609–614Google Scholar
  51. Wang et al (2015) 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol Rev 71:592–610CrossRefGoogle Scholar
  52. Warwick D, Hartopp PG, Viljoen RP (1979) Application ofthe thermal infrared line scan¬ning technique to engineering geological mapping in South Africa. Q J Eng Geol 12:159–179Google Scholar
  53. Watson K (1973) Periodic heating of a layer over a semi-infinite half solid. J Geophys Res 78:5904–5910CrossRefGoogle Scholar
  54. Watson K (1975) Geologic applications of thermal infrared images. Proc IEEE 63(1):128–137CrossRefGoogle Scholar
  55. Watson K (1982a) Regional thermal inertia mapping from an experimental satellite. Geophysics 47:1681–1687Google Scholar
  56. Watson K (1982b) Regional thermal inertia mapping from an experimental satellite. Geophysics 47:1681–1687CrossRefGoogle Scholar
  57. Watson K, Rowan LC, Bowers TL, Anton-Pacheco C, Gumiel P, Miller SH (1996) Lithologic analysis from multispectral thermal infrared data of the alkalic rock complex at Tron Hill, Colorado. Geophysics 61:706–721CrossRefGoogle Scholar
  58. Watson IM et al (2004) Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spetroradiometer. J Volcano Geother Res. 135:75–89CrossRefGoogle Scholar
  59. Yang L et al (2014) Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi. Northwest China. J Arid Land 6(6):704–716CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Formerly Professor, Earth Resources Technology, Department of Earth SciencesIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations