Physikalische Eigenschaften und Prozesse

  • Wulf Amelung
  • Hans-Peter Blume
  • Heiner Fleige
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Zusammenfassung

Böden sind als Dreiphasensysteme durch jeweils typische physikalische Eigenschaften kennzeichnet. Neben der Körnung sowie dem Bodengefüge bestimmen besonders Bodenwasser, Bodenluft sowie Bodentemperatur die Funktionen in Böden. Die mechanische Festigkeit und Wechselwirkung mit Wasser-, Luft- und Gashaushalt, aber auch zur chemischen und biologischen Zusammensetzung im Boden entscheidet über die dauerhafte Gewährleistung von Bodenfunktionen. Sie dient ebenso als Hinweis für die geologischen Ausgangsbedingungen, aber auch zur Erklärung hydraulischer, chemischer und biologischer Stabilisierungs- bzw. Destabilisierungsvorgänge. Folglich ist sie das Kennzeichen für die Bodendegradation. Die Bodenfarbe als physikalische Größe dient besonders der Beschreibung der Bodenzusammensetzung und -entwicklung.

Literatur

  1. AG Bodenkunde der Glä & BGR: Bodenkundliche Kartieranleitung, 5. Aufl. Schweizerbart, Stuttgart (2005)Google Scholar
  2. Andersson, S., Hakansson, I.: Markfysikaliska undersökningar I odlad jord. Grundförbättring 18, 191 (1966)Google Scholar
  3. Bachmann, J.: Thermisches Verhalten der Böden. Handbuch der Bodenkunde. Ecomed, Lech (2005). (Kap.2.6.4)Google Scholar
  4. Barron, V., Torrent, J.: Use of Kubelka Munk theory for study the influence of iron oxides on soil colour. J. Soil Sci. 37:499–510 (1986)Google Scholar
  5. Beck-Broichsitter, S.: PHD Thesis. Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde, CAU H. 112 (2017). ISSN: 0933-680xGoogle Scholar
  6. Beyer, W.: Zur Bestimmung der Wasserdurchlässigkeit von Kiesen und Sanden aus der Kornverteilungskurve. Wasserwirtschaft und Wassertechnik 14, 165–168 (1964)Google Scholar
  7. Bishop, A.W.: Pore pressure and suction in soils, S. 38. Butterworths, London (1961)Google Scholar
  8. Bodman, G.B., Coleman, E.A.: Moisture and energy conditions during downward entry of water into soils. Proc. Soil Sci. Soc. Am. 8, 116–122 (1944)CrossRefGoogle Scholar
  9. Bohne, K.: An Introduction Into Applied Soil Hydrology. Catena, Sweden. (2005). ISBN: 3-923381-51-4Google Scholar
  10. Bolt, G.H., Jansen, A.R.P., Koenigs, F.F.R.: Allgamene Bodemkunde. Landbouwhogeschool Wageningen (1965)Google Scholar
  11. Boussinesq, J.: Application des potentiels à l’étudede l’équilibre et du movement des solides élastiques, S. 30. Gautiher-Villars, Paris (1885)Google Scholar
  12. Boynton, B., Compton, O.C.: Soil Sci. 57, 107 (1944)CrossRefGoogle Scholar
  13. Buckingham, E.: Studies on the movement of soil moisture. US.Dep. Agric.Bur. Soils Bull. 38, 25 (1907)Google Scholar
  14. Ehlers, W., Schmidtke, K., Rauber, R.: Änderung der Dichte und Gefügefunktion südniedersächsischer Lößböden unter Ackernutzung. Landnutzung und Landentwicklung 44, 9–18 (2002)Google Scholar
  15. Emerson, W.W.: J. Soil Sci. 10, 235 (1959)CrossRefGoogle Scholar
  16. Engelhardt, W.V.: Porenraum der Sedimente. Springer, Berlin (1960)CrossRefGoogle Scholar
  17. Fröhlich, O.K.: Druckverteilung im Baugrund. Springer, Wien (1934)CrossRefGoogle Scholar
  18. Gebhardt, S.: Wasserhaushalt und Funktionen der Böden im Grundwasserabsenkbereich des Wasserwerkes Wacken in Schleswig Holstein. Schriftenr Inst Pflanzenernähr & Bodenk. CAU Kiel, H. 75 (2007). (ISSN: 0933-680X)Google Scholar
  19. Geiger, R.: Das Klima der bodennahen Luftschicht. Vieweg, Braunschweig (1961)Google Scholar
  20. Hartge, K.H., Horn, R.: Einführung in die Bodenphysik, 4. Aufl. Schweizerbart, Stuttgart (2014)Google Scholar
  21. Heibach, P., Holthusen, D., Horn, R.: Soil Shear Stability at the Microscale as affected by long-term Potassium Fertilization. S. 89–103. Frontiers for Potassium. IPNI Publ. Fertilization (2018)Google Scholar
  22. Jury, W.A., Gardner, W.R., Gardner, W.H.: Soil Physics, S. 328. Wiley, New York (1991)Google Scholar
  23. Kirkham, D., Powers, W.L.: Advanced Soil Physics, S. 534. Wiley Interscience, New York (1972)Google Scholar
  24. Kuron, H.: Z.Pflanzenern. Bodenkd. 18, 179 (1930)Google Scholar
  25. Newmark, N.M.: Influence charts for computation of stresses in elastic foundations. Uni.Illinois Bull. 338 (1942)Google Scholar
  26. Ochiston, H.D: Soil Sci. 78, 463 (1954)Google Scholar
  27. Olphen, H. van: Dispersion and flocculation. In: Newman, A.C.D. (Hrsg.) Chemistry of Clays and Clay Minerals. Mineral Soc, Monograph 6, S. 203–224. Longman Scient & Techn, Harlow (1987)Google Scholar
  28. Penman, H.L.: Evaporation- an introductory survey. Neth. J. Agr. Sci. 4, 9–29 (1956)Google Scholar
  29. Philip, J.A.: The theory of infiltration. Soil Sci. 84, 257–264 (1957)CrossRefGoogle Scholar
  30. Renger, M., Strebel, O., Wessolek, G., Duynisveld, W.H.M.: Evapotranspiration and Groundwater Recharge – a Case-Study for Different Climate, Crop Patterns, Soil Properties and Groundwater Depth Conditions. Z.Pflanzenern. Bodenkd 149, 371–381 (1986)CrossRefGoogle Scholar
  31. Richards, L.A.: A Pressure membrane extraction apparatus for soil solution. Soil Sci. 51, 377–386 (1941)CrossRefGoogle Scholar
  32. Richter, J., Großgebauer, A.: Z.Pflanzenern. Bodenkd. 141, 181 (1978)Google Scholar
  33. Sharratt, H., Campbell, B.: Radiation balance of soil straw surface modified by straw colour. J. Agron. 86, 200–203 (1994)CrossRefGoogle Scholar
  34. Sprengel, C.: Die Lehre vom Dünger oder Beschreibung aller bei der Landwirthschaft gebräuchlicher vegetablilischer, animalischer und mineralischer Düngermaterialien, nebst Erklärung ihrer Wirkungsart. Leipzig, 1839 (1837)Google Scholar
  35. USDA: Soil Taxonomy, 2. Aufl. Soil Conservation Service, Washington, D.C. (1999)Google Scholar
  36. WRB: World Reference Base for Soil Resources. FAO, Rome (2014). (ISBN 978-92-5-108369-7)Google Scholar
  37. Zimmermann, I.: Entwicklung einer umweltgerechten Erdbestattungspraxis im Hinblick auf die Folgewirkungen auf Böden, Grundwasser und Atmosphäre Bd. 97. Schriftenreihe des Instituts für Pflanzenernährung und Bodenkunde. CAU Kiel, Kiel (2012). (ISSN: 0933-680X)Google Scholar

Weiterführende Literatur

  1. Alonso, P., Delage, P.: Unsaturated soils, Bd. 1–3. Balkema, Rotterdam (1995)Google Scholar
  2. Armindo, R.A., Wendroth, O.: Physical soil structure evaluation based on hydraulic energy functions. Soil Sci. Soc. Am. J. 80, 1167–1180 (2016)CrossRefGoogle Scholar
  3. Babel, U., Benecke, P., Hartge, K.H., Horn, R., Wiechmann, H.: Determination of Soil Structure at Vari- ous Scales. In: Hartge, K.H., Stewart, R. (Hrsg.) Soil Structure – its Development and Function (Advances in Soil Science), S. 1–10. CRC, Boca Raton (1995)Google Scholar
  4. Bachmann, J., Deurer, M., Arye, G.: Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle-dependent water-retention model. Vadose Zone J. 6, 436–445 (2007)CrossRefGoogle Scholar
  5. Barouchas, P.E., Moustakas, N.K.: Soil colour and spectral analysis employing linear regression models. Effect of organic matter. Int. Agrophysics 18, 1–10 (2004)Google Scholar
  6. Barrett, L.R.: Spectrophotometric color measurement in situ in well drained sandy soils. Geoderma 108, 49–77 (2002)CrossRefGoogle Scholar
  7. Baumgartl, T.: Prediction of tensile stresses and volume change with hydraulic models. In: Pagliai, M., Jones, R. (Hrsg.) Sustainable Land Management – Environmental Protection – a Soil Physical Approach. Advances in Geoecology Bd. 35, 507–514. Catena, Reiskirchen (2002)Google Scholar
  8. Bear, J., Verruijt, A.: Modeling Groundwater Flow and Pollution. Series: Theory and Applications of Transport in Porous Media, Vol. D. Reidel, Dordrecht (1987)CrossRefGoogle Scholar
  9. Bengough, A.G., McKenzie, B.M., Hallett, P.D., Valentine, T.A.: Root elongation, water stress, and me- chanical impedance: A review of limiting stresses and beneficial root tip traits. J. Exp. Bot. 62(1), 59–68 (2011)CrossRefGoogle Scholar
  10. Berli, M.: Soil Physics – Theoretical Analysis of Fluid Inclusions for In Situ Soil Stress and Deformation Measurements. Soil Sci. Soc. Am. J. 70, 1441–1452 (2006)CrossRefGoogle Scholar
  11. Bigham, J.M., Ciolkosz, E.J. (Hrsg.): Soil color. Soil Sci Soc Am Spec Publ 31. SSSA, Madison (1993)Google Scholar
  12. Blume, H.-P., Felix-Henningsen, P., Frede, H.-G., Guggenberger, G., Horn, R., Stahr, K. (Hrsg.): Handbuch der Bodenkunde. Wiley – VCH, Weinheim (1996 ff)Google Scholar
  13. Boivin, P., Garnier, P., Tessier, D.: Relationship between clay content, clay type, and shrinkage properties of soil samples. Soil Sci. Soc. Am. J. 68, 1145–1153 (2004)CrossRefGoogle Scholar
  14. Brady, N.C., Weil, R.R.: The Nature And Properties Of Soils. Pearson, London (2008)Google Scholar
  15. Cook, F.J., Knight, J.H.: Oxygen transport to plant roots: Modeling for physical understanding of soil aeration. Soil Sci. Soc. Am. J. 67, 20–31 (2003)CrossRefGoogle Scholar
  16. Cosentino, D., Chenu, C., Le Bissonnais, Y.: Aggregate stability and microbial community dynamics under drying-wetting cycles in a silt loam soil. Soil Biol. Biochem. 38, 2053–2062 (2006)CrossRefGoogle Scholar
  17. Craig, R.F.: Soil Mechanics, 5. Aufl. Chapman & Hall, Cambridge (1995)Google Scholar
  18. Deurer, M., Vogeler, I., Khrapitchev, A., Scotter, D.: Imaging of water flow in porous media by magnetic resonance imaging microscopy. J. Environ. Qual. 31, 487–493 (2002)CrossRefGoogle Scholar
  19. Deutscher Normenausschuss Farbe: Din 6164. Teil I – II (1980)Google Scholar
  20. Doerr, S.H., Ritsema, C.J., Dekker, L.W., Scott, D.F., Carter, D.: Water repellence of soils: new insights and emerging research needs. Hydrol. Processes 21, 2223–2228 (2007)CrossRefGoogle Scholar
  21. Dörner, J.: Anisotropie von Bodenstrukturen und Porenfunktionen in Böden und deren Auswirkungen auf Transportprozesse in gesättigtem und ungesättigtem Zustand. Schr Institut für Pflanzenernähr & Bodenk, CAU Kiel, Kiel H. 68 (2005)Google Scholar
  22. Dörner, J., Dec, D., Peng, X., Horn, R.: Effect of land use change on the dynamic behaviour of structural proper- ties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 159, 189–197 (2010)CrossRefGoogle Scholar
  23. Duttmann, R., Schwanebeck, M., Nolde, M., Horn, R.: Predicting soil compaction risks related to field traffic during silage maize harvest. Soil Sci. Soc. Am. J. 78, 408–421 (2014)CrossRefGoogle Scholar
  24. Ehlers, W.: Wasser in Boden und Pflanze. Ulmer, Stuttgart (1996)Google Scholar
  25. Ellerbrock, R.H., Gerke, H.H.: Analyzing management-induced dynamics of soluble organic matter composi tion in soils from long-term field experiments. Vadose Zone J. 15, 4 (2016)CrossRefGoogle Scholar
  26. Feng, G., Wu, L., Letey, J.: Evaluating aeration criteria by simultaneous measurement of oxygen diffusion rate and soil-water regime. Soil Sci. 167, 495–503 (2002)CrossRefGoogle Scholar
  27. Fitzpatrick, E.A.: Soil microscopy and micromorphology. Wiley, Chichester (1993)Google Scholar
  28. Flessa, H., Wild, U., Klemisch, M., Pfadenhauer, J.: Nitrous oxide and methane fluxes from organic soils under agriculture. Eur. J. Soil Sci. 49, 327–335 (1998)Google Scholar
  29. Fox, D.M., Darboux, F., Carrega, P.: Effects of fire-induced water repellency on soil aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrol. Processes 21, 2377–2384 (2007)CrossRefGoogle Scholar
  30. Fredlund, D.G., Rahardjo, H.: Soil mechanics for unsaturated soils. Wiley, New York (1993)CrossRefGoogle Scholar
  31. Gerke, H.H.: Preferential flow description for structured soils. J. Plant Nutr. Soil Sci. 169, 382–400 (2006)CrossRefGoogle Scholar
  32. Glinski, J., Stepniewski, W.: Soil Aeration and its Role for Plants. CRC, Boca Raton (1985) (HANKS, R.J.: Applied Soil Physics. 2. Aufl. Springer, Berlin (1992))Google Scholar
  33. Goebel, M.O, Bachmann, J., Reichstein, M., Jansseni, A., Guggenberger, G.: Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. (2011)  https://doi.org/10.1111/j.1365-2486.2011.02414.x
  34. Hallett, P.D., Newson, T.A.: Describing soil crack formation using elastic-plastic fracture mechanics. Eur. J. Soil Sci. 56, 31–38 (2005)CrossRefGoogle Scholar
  35. Hallett, P.D., Baumgartl, T., Young, I.M.: Subcritical water repellency of aggregates from a range of soil management practices. Soil Sci. Soc. Am. J. 65, 184–190 (2001)CrossRefGoogle Scholar
  36. Han, E., Kautz, T., Perkons, U., Uteau, D., Peth, S., Huang, N., Horn, R., Koepke, U.: Root growth dynamics inside and outside of soil biopores as affected by crop sequence determined with the profile wall method. Biol. Fertil. Soils 51, 847–856 (2015)CrossRefGoogle Scholar
  37. Hartge, K.H., Horn, R.: Die physikalische Untersuchung von Böden, 4. Aufl. Schweizerbart, Stuttgart (2009)Google Scholar
  38. Huang, P.M., Li, Y., Sumner, M.E. (Hrsg.): Handbook Of Soil Sciences- Properties And Processes, 2. Aufl. CRC, Boca Raton (2011)Google Scholar
  39. Herbrich, M., Gerke, H.: Scales of water retention dynamics observed in eroded Luvisols from arable hummocky soil landscape. Vadose Zone J. (2017)  https://doi.org/10.2136/vzj2017.01.0003
  40. Holthusen, D., Haas, C., Peth, S., Horn, R.: Are standard values the best choice? A critical statement on rheologi- cal soil fluid properties viscosity and surface tension. Soil Tillage Res. 125, 61–71 (2012)CrossRefGoogle Scholar
  41. Horn, R., Kutilek, M.: The intensity- capacity concept – how far is it possible to predict intensity values with capacity parameters. Soil and Tillage Res. 103, 1–3 (2009)CrossRefGoogle Scholar
  42. Horn, R., Peth, S.: Mechanics of unsaturated soils for agricultural applications (Kap. 3; S. 31). In: Huang, P.M., Li, Y., Sumner, M.E. (Hrsg.) Handbook of Soil Sciences, 2. Aufl. Taylor and Francis, Abingdon (2011) (Kap.3, S. 1–30, ISBN: 978-1-4398- 0305-9)Google Scholar
  43. Horn, R., Hartge, K.H., Bachmann, J., Kirkham, M.B.: Mechanical stresses in soils assessed from bulk- density and penetration-resistance data sets. Soil Sci. Soc. Am. J. 71, 1455–1459 (2007)CrossRefGoogle Scholar
  44. Horn, R., Peng, X., Fleige, H., Dörner, J.: Pore rigidity in structured soils–only a theoretical boundary condition for hydraulic properties? Soil Sci. Plant Nutr. 60, 3–14 (2014)CrossRefGoogle Scholar
  45. Jury, W.A., Horton, R.: Soil physics. 6th ed. Wiley, New York (2004) (Kutilek, M., Nielsen, D.R.: Soil hydrology, Catena Publ., Cremlingen (1994) Lal, R., Shukla, M.K.: Principles of Soil Physics. Dekker, New York (2004))Google Scholar
  46. Keller, T., Ruiz, S., Stettler, M., Berli, M.: Determining soil stress beneath a tire: Measurements and simulations. Soil Sci. Soc. Am. J. 80, 541–553 (2016)CrossRefGoogle Scholar
  47. Lal, R., Follett, R.F.: Soil Carbon Sequestration and the Greenhouse Effect. SSSA special publication, Madison (2009). ISBN 978-0-89118-850-6Google Scholar
  48. Landa, E.R., Munsell, A.H.: A sense of color at the interface of art and science. Soil Sci. 169, 83–89 (2004)Google Scholar
  49. Landl, M., Huber, K., Schnepf, A., Vanderborght, J., Javaux, M., Bengough, A.G., Vereecken, H.: A new model for root growth in soil with macropores. Plant and Soil  https://doi.org/10.1007/s11104-016-3144-2
  50. Leue, M., Gerke, H.H., Ellerbrock, R.H.: Millimeter-scale distribution of organic matter composition at intact biopore and crack surfaces. Eur. J. Soil Sci. 64, 757–769 (2013)CrossRefGoogle Scholar
  51. Leue, M., Eckhardt, K.-U., Ellerbrock, R.H., Gerke, H.H., Leinweber, P.: Analyzing organic matter composition at intact biopore and crack surfaces by combining DRIFT spectroscopy and Pyrolysis-Field Ionization Mass Spectrometry. J. Plant Nutr. Soil Sci. 179, 5–17 (2016)CrossRefGoogle Scholar
  52. Lin, H., Bouma, J., Wilding, L.P., Richardson, J.L., Kutílek, M., Nielsen, D.R.: Advances in Hydropedology. Adv. Agron. 85, 2–91 (2005)Google Scholar
  53. Maier, M., Schack-Kirchner, H.: Using the gradient method to determine soil gas flux: A review. Agric. For. Meteorol. 192–193, 78–95 (2014)CrossRefGoogle Scholar
  54. Malicki, M.A., Plagge, R., Roth, C.H.: Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur. J. Soil Sci. 47, 357–366 (1996)CrossRefGoogle Scholar
  55. Markert, A., Peters, A., Wessolek, G.: Analysis of the Evaporation Method to Obtain Soil Thermal Conductivity Data in the Full Moisture Range. Soil sci. Soc. Am. J. 80, 275–283 (2016)CrossRefGoogle Scholar
  56. McHale, G., Newton, M.I., Shirtcliffe, N.J.: Water-repellent soil and its relationship to granularity, surface roughness and hydrophobicity: a materials science view. Eur. J. Soil Sci. 56, 445–452 (2005)CrossRefGoogle Scholar
  57. Moldrup, P., Olesen, T., Blendstrup, H., Komatsu, T., De Jonge, L.W., Rolston, D.E.: Predictive-descriptive models for gas and solute diffusion coefficients in variably saturated porous media coupled to pore-size distribution: IV. Solute diffusivity and the liquid phase impedance factor. Soil Sci. 172, 741–750 (2007)CrossRefGoogle Scholar
  58. Mordhorst, A., Peth, S., Horn, R.: Influence of mechanical loading on static and dynamic CO2 efflux on differently textured and managed Luvisols. Geoderma 219–220, 1–13 (2014)CrossRefGoogle Scholar
  59. O’Brian, N.R.: Clays Clay Miner. 19, 353 (1971)Google Scholar
  60. Ochsner, T.E., Sauer, T.J., Horton, R.: Soil heat storage measurements in energy balance studies. Agron. J. 99, 311–319 (2007)CrossRefGoogle Scholar
  61. Ould Baba, H., Peth, S., Horn, R., Bens, O., Hüttl, R.F.: Quantification of mechanical strength and sliding stabil- ity of an artificial water catchment (Chicken Creek). Soil Tillage Res. 146, 66–78 (2014)CrossRefGoogle Scholar
  62. Overduin, P.P.: Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating. Cold Reg. Sci. Technol. 45, 8–22 (2006)CrossRefGoogle Scholar
  63. Peng, X., Horn, R.: Identifying six types of soil shrinkage curves from a large set of experimental data. Soil Sci. Soc. Am. J. 77, 372–381 (2013)CrossRefGoogle Scholar
  64. Peth, S., Horn, R., Beckmann, F., Donath, T., Fischer, J., Smucker, A.J.M.: 3D quantification of intraaggregate pore space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 72, 897–907 (2008)Google Scholar
  65. Pieri, L., Bittelli, M., Pisa, P.R.: Laser diffraction, transmission electron microscopy and image analysis to evaluate a bimodal Gaussian model for particle size distribution in soils. Geoderma 135, 118–132 (2006)CrossRefGoogle Scholar
  66. Radcliffe, D.E., Simunek, J.: Soil physics with hydrus – modeling and applications. CRS, Boca Raton (2010)Google Scholar
  67. Ritsema, C.J., Dekker, L.W.: Water repellency in soils. Elsevier, Amsterdam (2000)Google Scholar
  68. Ruser, R., Flessa, H., Schilling, R., Steindl, H., Beese, F.: Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Biol. Fert. Soils 30, 544–549 (1998)Google Scholar
  69. Sauer, T., Horton, R.: Soil heat flux. Am. Soc. Agron. 131–154 (2005)Google Scholar
  70. Schack-Kirchner, H., Hildebrand, E.: Changes in soil structure and aeration due to liming and acid irrigation. Plant Soil 199, 167–176 (1998)Google Scholar
  71. Sharma, R.S.: Patterns and mechanisms of migration of light non-aqueous phase liquid in an unsaturated sand. Géotechnique 53, 225–240 (2003)CrossRefGoogle Scholar
  72. Simojoki, A.: Oxygen Supply to plant roots in cultivated mineral soils. PHD Thesis, Univ. Helsinki, Pro Terra 7 (2001)Google Scholar
  73. Simojoki, A., Fazekas-Becker, O., Horn, R.: Macro- and microscale gaseous diffusion in a stagnic Luvisol as affected by compaction and reduced tillage. Agric. Food Sci. 17, 267–277 (2008)CrossRefGoogle Scholar
  74. Simunek, J., Jarvis, N.J., Genuchten, M.T. van, Gardenas, A.: Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone J. Hydrol. 272, 14–35 (2003)CrossRefGoogle Scholar
  75. Smucker, A., Park, E.J., Dörner, J., Horn, R.: Soil micropore development and contributions to soluble carbon transport within microagggregates. Vadose Zone J. 6, 282–290 (2007)CrossRefGoogle Scholar
  76. Topp, G.C., Dow, B., Edwards, M., Gregorich, E.G., Curnoe, W.E., Cook, F.T.: Oxygen measurements in the root zone facilitated by TDR. Canad. J. Soil Sci. 80, 33–41 (2000)CrossRefGoogle Scholar
  77. Tuller, M., Or, D.: Water films and scaling of soil characteristic curves at low water contents. Water Res. Res. 41, 09401–09406 (2005)Google Scholar
  78. Urbanek, E., Hallett, P., Feeney, D., Horn, R.: Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems Geoderma 140, 147–155 (2007)Google Scholar
  79. Usowicz, B., Lipiec, J., Ferrero, A.: Prediction of soil thermal conductivity based on penetration resistance and water content or air-filled porosity. Int. J. Heat Mass Transfer 49, 5010–5017 (2006)CrossRefGoogle Scholar
  80. Veneziano, D., Tabaei, A.: Nonlinear spectral analysis of flow through porous media with isotropic lognormal hydraulic conductivity. Stochastic models of flow and transport in multiple-scale heterogeneous porous media. J. Hydrol. 294, 4–17 (2004)CrossRefGoogle Scholar
  81. Vereecken,H., A. Schnepf, J.W. Hopmans, M. Javaux,D. Or, T. Roose, J. Vanderborght, M.H. Young, W. Amelung,M. Aitkenhead, S.D. Allison, S. Assouline, P. Baveye, M. Berli,N. Brüggemann, P. Finke, M. Flury, T. Gaiser, G. Govers,T. Ghezzehei, P. Hallett, H.J. Hendricks Franssen, J. Heppell,R. Horn, J.A. Huisman, D. Jacques, F. Jonard, S. Kollet, F. Lafolie,K. Lamorski, D. Leitner, A. McBratney, B. Minasny, C. Montzka,W. Nowak, Y. Pachepsky, J. Padarian, N. Romano, K. Roth,Y. Rothfuss, E.C. Rowe, A. Schwen, J. Šimůnek, A. Tiktak, J. Van Dam, S.E.A.T.M. van der Zee, H.J. Vogel, J.A. Vrugt, T. Wöhling, and I.M. Young 2016: Modeling Soil Processes:Review, Key Challenges, and New Perspectives Vadose Zone J.  https://doi.org/10.2136/vzj/09.0131 Vol 15, 57 S.
  82. Wheeler, S.J.: Coupling of hydraulic hysteresis and stress – Strain behaviour in unsaturated soils. Géotechnique 53, 41–54 (2003)CrossRefGoogle Scholar
  83. Wiermann, C., Werner, D., Horn, R., Rostek, J., Werner, B.: Stress/strain processes in a structured silty loam Luvisol under different tillage treatments in Germany. Soil Tillage Res. 53, 117–128 (2000)CrossRefGoogle Scholar
  84. Woche, S.K., Goebel, M.-O., Kirkham, M.B., Horton, R., Ploeg, R.R. van der, Bachmann, J.: Contact angle of soils as affected by depth, texture, and land management. Eur. J. Soil Sci. 56, 239–251 (2005)CrossRefGoogle Scholar
  85. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and methods, quantitative data and formulae. 2. Aufl. Wiley, New York (1982)Google Scholar
  86. Yang, Y., Wendroth, O., Walton, R.J.: Temporal dynamics and stability of spatial soil matric potential in two land use systems. Vadose Zone J. 15,  https://doi.org/10.2136/vzj2015.12.0157 (2016)CrossRefGoogle Scholar
  87. Zhang, B., Horn, R., Hallett, P.D.: Mechanical Resilience of Degraded Soil Amended with Organic Matter. Soil Sci. Soc. Am. J. 69, 864–871 (2005)CrossRefGoogle Scholar
  88. Zhang, Y., Wang, S., Baff, A.G., Black, T.A.: Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Reg. Sci. Technol. 52, 355–370 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Wulf Amelung
    • 1
    • 2
  • Hans-Peter Blume
    • 3
  • Heiner Fleige
    • 3
  • Rainer Horn
    • 3
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 4
  • Berndt-Michael Wilke
    • 7
  1. 1.INRES – Allgemeine Bodenkunde und BodenökologieRheinische-Friedrich-Wilhelms-Universität BonnBonnDeutschland
  2. 2.Institut für Bio- und GeowissenschaftenAgrosphäre, Forschungszentrum Jülich GmbHJülichDeutschland
  3. 3.Institut für Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für Biogeochemie und SchadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für ÖkologieTU BerlinBerlinDeutschland

Personalised recommendations