Organische Bodensubstanz

  • Wulf Amelung
  • Hans-Peter Blume
  • Heiner Fleige
  • Rainer Horn
  • Ellen Kandeler
  • Ingrid Kögel-Knabner
  • Ruben Kretzschmar
  • Karl Stahr
  • Berndt-Michael Wilke
Chapter

Zusammenfassung

Die Masse der organischen Bodensubstanz macht in den meisten Oberböden nur wenige Prozentanteile aus, hat aber entscheidenden Einfluss auf alle Bodenfunktionen und spielt eine zentrale Rolle im globalen Kreislauf des Kohlenstoffs. Der Kohlenstoffgehalt bzw. der Schwarzanteil der Bodenfarbe sind daher ein differenzierendes Kriterium bei der Profilansprache in der deutschen und in internationalen Klassifikationen.

Literatur

  1. Amelung, W., Brodowski, S., Sandhage-Hofmann, A., Bol, R.: Combining biomarker with stable isotope analyses for assessing the transformation and turnover of soil organic matter. Adv. Agron. 100,155–250 (2008)CrossRefGoogle Scholar
  2. Batjes, N.H.: Total carbon and nitrogen in the soils of the world. Eur. J. Soil. Sci. 47,151–163 (1996)CrossRefGoogle Scholar
  3. Batjes, N.H.: Harmonizes soil property values for broad-scale modelling (WISE30sec) with estimates of global soil carbon stocks. Geoderma 269,61–68 (2016)CrossRefGoogle Scholar
  4. Blair, N., Faulkner, R.D., Till, A.R., Poulton, P.R.: Long-term management impacts on soil C, N and physical fertility – part 1: broadbalk experiment. Soil Till. Res. 91,30–38 (2006)CrossRefGoogle Scholar
  5. Blankenburg, J., Schäfer, W.: Bodenlandschaft der Moore in den Talsandniederungen der Altmoränenlandschaften, Moore im Teufelsmoor (Exkursion G 2). Mitt Deutschen Bodenk Gesellschaft 90,231–247 (1999)Google Scholar
  6. Börjesson, G., Menichetti, L., Kirchmann, H., Kätterer, T.: Soil microbial community structure affected by 53 years of nitrogen fertilisation and different organic amendments. Biol. Fertil. Soils. 48,245–257 (2012)CrossRefGoogle Scholar
  7. Bosch, A., Schmidt, K., Je, J.S., Doerfer, C., Scholten, T.: Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena 149,221–231 (2017)CrossRefGoogle Scholar
  8. Brüggemann, N., Gessler, A., Gavrichkova, O., Ghashgaie, J., Gomez-Casanovas, N., Keitel, C., Knohl, A., Kuptz, D., Palacio, S., Salmon, Y., Uchida, Y., Bahn, M.: Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: a review. Biogeosci. 8,3457–3489 (2011)CrossRefGoogle Scholar
  9. Chenu, C., Stotzky, G.: Interactions between microorganisms and soil particles: an overview. In: Huang, P.M., Bollag, J.-M., Senesi, N. (Hrsg.) Interactions between Soil Particles and Microorganisms – Impact on the Terrestrial Ecosystems, S. 3–40. Wiley, Chichester (2002)Google Scholar
  10. Christensen, B.T.: Physical fractionation of soil and structural and functional complexity in organic matter turnover. Eur J Soil Sci 52,345–353 (2001)CrossRefGoogle Scholar
  11. Coleman, K., Jenkinson, D.S.: RothC-26.3, a model for the turnover of carbon in soil: model description and user’s guide. Lawes Agricultural Trust, Harpenden (1999)Google Scholar
  12. Davidson, E.A., Janssens, I.A.: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440,165–173 (2006)CrossRefGoogle Scholar
  13. Dendoncker, N., Van Wesemael, B., Rounsevell, M.D.A., Roelandt, C., Lettens, S.: Belgium’s CO2 mitigation potential under improved cropland management. Agric Ecosyst Environ 103,101–116 (2004)CrossRefGoogle Scholar
  14. Derrien, D., Amelung, W.: Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur J Soil Sci 62,237–252 (2011)CrossRefGoogle Scholar
  15. Eusterhues, K., Rumpel, C., Kleber, M., Kögel-Knabner, I.: Stabilisation of soil organic matter by interactions with minerals as revealed by mineral dissolution and oxidative degradation. Org Geochem 34,1591–1600 (2003)CrossRefGoogle Scholar
  16. Eusterhues, K., Rumpel, C., Kögel-Knabner, I.: Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Eur J Soil Sci 56,753–763 (2005)Google Scholar
  17. Fengel, D., Wegener, G.: Wood: chemistry, ultrastructure, reactions. De Gruyter, Berlin (1989)Google Scholar
  18. Flessa, H., Amelung, W., Helfrich, M., Wiesenberg, G.L.B., Gleixner, G., Brodowski, S., Rethemeyer, J., Kramer, C., Grootes, P.-M.: Storage and stability of organic matter and fossil carbon in a Luvisol and Phaeozem with continuous maize cropping: a synthesis. J Plant Nutr Soil Sci 171,36–51 (2008)CrossRefGoogle Scholar
  19. Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J.: Carbon sequestration in the agricultural soils of Europe. Geoderma 122,1–23 (2004)CrossRefGoogle Scholar
  20. Garten, C.T., Hanson, P.J.: Measured forest soil C stocks and estimated turnover times along an elevation gradient. Geoderma 136,342–352 (2006)CrossRefGoogle Scholar
  21. Golchin, A., Oades, J.M., Skjemstad, J.O., Clarke, P.: Soil structure and carbon cycling. Aust J Soil Res 32,1043–1068 (1994)CrossRefGoogle Scholar
  22. Gregorich, E.G., Beare, M.H., McKim, U.F., Skjemstad, J.O.: Chemical and biological characteristics of physically uncomplexed organic matter. Soil Sci Soc Am J 70,975–985 (2006)CrossRefGoogle Scholar
  23. Guggenberger, G., Zech, W., Haumaier, L., Christensen, B.T.: Land use effects on the composition of organic matter in particle-size separates of soils. II. CP-MAS and solution 13C-NMR analysis. Eur J Soil Sci 46,147–158 (1994)CrossRefGoogle Scholar
  24. Haider, K.: Problems related to the humification processes in soils of the temperate climate. In: Bollag, J.-M., Stotzky, G. (Hrsg.) Soil biochemistry, Bd. 7, S. 55–94. Dekker, New York (1992)Google Scholar
  25. Haynes, R.J.: Labile organic matter fractions as central components of the quality of agricultural soils: an overview. Adv Agron 85,221–268 (2005)CrossRefGoogle Scholar
  26. Helfrich, M., Flessa, H., Mikutta, R., Dreves, A., Ludwig, B.: Comparison of chemical fractionation methods for isolating stable soil organic carbon pools. Eur J Soil Sci 58,1316–1329 (2007)CrossRefGoogle Scholar
  27. Jenkinson, D.S.: Studies on the decomposition of plant material in soil. V. The effects of plant cover and soil type on the loss of carbon from 14C-labelled ryegrass decomposing under field conditions. J Soil Sci 28,424–434 (1977)CrossRefGoogle Scholar
  28. Jenkinson, D.S.: The fate of plant and animal residues in soil. In: Hayes, M.H.B. (Hrsg.) The chemistry of soil processes, S. 505–561. Wiley, Chichester (1981)Google Scholar
  29. Jenkinson, D.S.: Soil organic matter and its dynamics. In: Waid, A. (Hrsg.) Russel’s soil conditions and plant growth, 11. Aufl, S. 564–607. Longman, Harlow (1988)Google Scholar
  30. John, B., Yamashita, T., Ludwig, B., Flessa, H.: Storage of organic carbon in aggregate and density fractions of silty soils under different types of land use. Geoderma 128,63–79 (2005)CrossRefGoogle Scholar
  31. Kögel-Knabner, I.: A review on the macromolecular organic composition in plant and microbial residues as input to soil. Soil Biol Biochem 34,139–162 (2002)CrossRefGoogle Scholar
  32. Kögel-Knabner, I., Kleber, M.: Mineralogical, physicochemical, and microbiological controls on soil organic matter stabilization and turnover. In: Pan Ming Huang, Yuncong Li, Malcolm E. Sumner (Hrsg.) Handbook of Soil Sciences, Resource Management and Environmental Impacts, 2. Aufl, S. 7-1–7-22. CRC Press, Boca Raton (2011)Google Scholar
  33. Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B., von Lützow, M.: An integrative approach of organic matter stabilization in temperate soils: Linking chemistry, physics, and biology. J Plant Nutr Soil Sci 171,5–13 (2008a)CrossRefGoogle Scholar
  34. Körschens, M., Albert, E., Armbruster, M., Barkusky, D., Baumecker, M., Behle-Schalk, L., Bischoff, R., Cergan, Z., Ellmer, F., Herbst, F., Hoffmann, S., Hofmann, B., Kismanyoky, T., Kubat, J., Kunzova, E., Lopez-Fando, C., Merbach, I., Merbach, W., Pardor, M.T., Rogasik, J., Ruhlmann, J., Spiegel, H., Schulz, E., Tajnsek, A., Toth, Z., Wegener, H., Zorn, W.: Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: results from 20 European long-term field experiments of the twenty-first century. Arch Agron Soil Sci 59,1017–1040 (2013)CrossRefGoogle Scholar
  35. Ladd, J.N., Foster, R.C., Nannipieri, P., Oades, J.M.: Soil structure and biological activity. In: Bollag, J.-M., Stotzky, G. (Hrsg.) Soil Biochemistry, Bd. 9, S. 23–78. Dekker, New York (1996)Google Scholar
  36. Lair, G.H., Gerzabek, M.H., Haberhauer, G.: Sorption of heavy metals on organic and inorganic soil constituents. Environ Chem Lett 5,23–27 (2007)CrossRefGoogle Scholar
  37. Lang, F., Krüger, J., Amelung, W., Willbold, S., Frossard, E., Bünemann, E.K., Bauhus, J., Nitschke, R., Kandeler, E., Marhan, S., Schulz, S., Bergkemper, F., Schloter, M., Luster, J., Guggisberg, F., Kaiser, K., Mikutta, R., Guggenberger, G., Polle, A., Pena, R., Prietzel, J., Rodionov, A., Talkner, U., Meesenburg, H., von Wilpert, K., Hölscher, A., Dietrich, H.P., Chmara, I.: Soil phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. Biogeochemistry (2017, under review).Google Scholar
  38. Lehmann, J., Kleber, M.: The contentious nature of soil organic matter. Nature 528,60–68 (2015)CrossRefGoogle Scholar
  39. Ludwig, B., Helfrich, M., Flessa, H.: Modelling the long-term stabilization of carbon from maize in a silty soil. Plant Soil 278,315–325 (2005)CrossRefGoogle Scholar
  40. Lützow, M. von, Kögel-Knabner, I., Ekschmitt, K., Matzner, E., Guggenberger, G., Marschner, B., Flessa, H.: Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions – a review. Eur J Soil Sci 57,426–445 (2006)CrossRefGoogle Scholar
  41. Lützow, M. von, Kögel-Knabner, I., Ekschmitt, K., Flessa, H., Guggenberger, G., Matzner, E., Marschner, B.: SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39,2183–2207 (2007)CrossRefGoogle Scholar
  42. Manna, M.C., Swarup, A., Wanjari, R.H., Mishra, B., Shahi, D.K.: Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res 94,397–409 (2007)CrossRefGoogle Scholar
  43. Mayer, L.M., Thornton, K.R., Schick, L.L., Jastrow, J.D., Harden, J.W.: Photodissolution of soil organic matter. Geoderma 170,314–321 (2012)CrossRefGoogle Scholar
  44. Mueller, C.W., Rethemeyer, J., Kao-Kniffin, J., Löppmann, S., Hinkel, K.M., Bockheim, J.G.: Large amounts of labile organic carbon in permafrost soils of northern Alaska. Global Change Biol 21,2804–2817 (2015)CrossRefGoogle Scholar
  45. Neumann, F.: Böden in Landschaftsausschnitten Bayerns. II. Südliches Tertiär-Hügelland und Ampertal. Bayer Landw Jb 56,960–971 (1979)Google Scholar
  46. Olah, G.-M., Reisinger, O., Kilbertus, G.: Biodégradation et humification. Atlas ultrastructural. Presses de l’université Laval, Quebec (1978)Google Scholar
  47. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, P., Smith, P.: Climate-smart soils. Nature 532,49–57 (2016)CrossRefGoogle Scholar
  48. Poeplau, C., Don, A., Six, J., Kaiser, M., Nieder, R., Benbi, D., Chenu, C., Cotrufo, F., Derrien, D., Grand, S., Gregorich, E., Griepentrog, M., Gunina, A., Kuzyakov, Y., Kühnel, A., MacDonald, L., Nebbioso, A., Soong, J., Trigalet, S., Vermeire, M.-L., Rovira, P., van Wesemael, B., Wiesmeier, M., Yeasmin, S.: Isolating soil organic carbon fractions with varying turnover rates – A comprehensive comparison of fractionation schemes. Soil Biol Biochem (2017, submitted)Google Scholar
  49. Powlson, D.S., Stirling, C.M., Jat, M.L., Gerard, B.G., Palm, C.A., Sanchez, P.A., Cassman, K.G.: Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change 4,678–683 (2014)CrossRefGoogle Scholar
  50. Prietzel, J., Thieme, J., Salomé, M., Knicker, H.: Sulfur K-edge X-ray absorption near edge fine structure spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biol Biochem 39,877–890 (2007)CrossRefGoogle Scholar
  51. Rethemeyer, J.: Organic carbon transformation in agricultural soils: radiocarbon analysis of organic matter fractions and biomarker compounds. Dissertation, Christian-Albrechts-Universität, Kiel (2004)Google Scholar
  52. Rumpel, C., Kögel-Knabner, I., Bruhn, F.: Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33,1131–1142 (2002)CrossRefGoogle Scholar
  53. Scharlemann, J.P.W., Tanner, E.V.J., Hiederer, R., Kapos, V.: Global soil carbon: understanding and managing the largest terrestrial carbon pool. Carbon Manage 5,81–91 (2014)CrossRefGoogle Scholar
  54. Schöning, I., Kögel-Knabner, I.: Chemical composition of young and old carbon pools throughout Cambisol and Luvisol profiles under forests. Soil Biol Biochem 38,2411–2424 (2006)CrossRefGoogle Scholar
  55. Schulten, H.-R., Leinweber, P.: New insights into organo-mineral particles: composition, properties and models of molecular structure. Biol Fertil Soils 30,399–432 (2000)CrossRefGoogle Scholar
  56. Schuur, E.A.G., Abbott, B.W., Bowden, W.B., Brovkin, V., Camill, P., Canadell, J.G., Chanton, J.P., Chapin III, F.S., Christensen, T.R., Ciais, P., Crosby, B.T., Czimczik, C.I., Grosse, G., Harden, J., Hayes, D.J., Hugelius, G., Jastrow, J.D., Jones, J.B., Kleinen, T., Koven, C.D., Krinner, G., Kuhry, P., Lawrence, D.M., McGuire, A.D., Natali, S.M., O’Donnell, J.A., Ping, C.L., Riley, W.J., Rinke, A., Romanovsky, V.E., Sannel, A.B.K., Schädel, C., Schaefer, K., Sky, J., Subin, Z.M., Tarnocai, C., Turetsky, M.R., Waldrop, M.P., Walter Anthony, K.M., Wickland, K.P., Wilson, C.J., Zimov, S.A.: Expert assessment of vulnerability of permafrost carbon to climate change. Clim Change 119,359–374 (2013)CrossRefGoogle Scholar
  57. Sierra, C.A., Müller, M., Metzler, H., Manzoni, S., Trumbore, S.E.: The muddle of ages, turnover, transit, and residence times in the carbon cycle. Global Change Biol 23,1763–1773 (2017)CrossRefGoogle Scholar
  58. Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes Sa, J.C., Albrecht, A.: Soil organic matter, biota and aggregation in temperate and tropical soils—effects of no-tillage. Agronomie 22,755–775 (2002)CrossRefGoogle Scholar
  59. Smith, P.: Carbon sequestration in croplands: the potential in Europe and the global context. Eur J Agron 20,229–236 (2004)CrossRefGoogle Scholar
  60. Spielvogel, S., Prietzel, J., Kögel-Knabner, I.: Soil organic matter changes in a spruce ecosystem 25 years after disturbance. -. Soil Sci Soc Am J 70,2130–2145 (2006)CrossRefGoogle Scholar
  61. Spielvogel, S., Prietzel, J., Kögel-Knabner, I.: Soil organic matter stabilization in acidic forest soils is preferential and soil type-specific. Eur J Soil Sci 59,674–692 (2008)CrossRefGoogle Scholar
  62. Swift, M.J., Heal, O.W., Anderson, J.M.: Decomposition in terrestrial ecosystems. Blackwell, Oxford (1979)Google Scholar
  63. Totsche, K.U., Amelung, W., Gerzabek, M.H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., Kögel-Knabner, I.: Microaggregates in soil. J Plant Nutr Soil Sci (2018, in press).Google Scholar
  64. Trumbore, S.E.: Age of soil organic matter and soil respiration: radiocarbon constraints on belowground dynamics. Ecol Appl 10,399–411 (2000)CrossRefGoogle Scholar
  65. Vleeshouwers, L.M., Verhagen, A.: Carbon emission and sequestration by agricultural land use: a model study for Europe. Global Change Biol 8,519–530 (2002)CrossRefGoogle Scholar
  66. Wiesmeier, M., Schad, P., von Lützow, M., Pöplau, C., Spörlein, P., Geuss, U., Hangen, E., Reischl, A., Schilling, B., Kögel-Knabner, I.: Quantification of functional soil organic carbon pools for major soil units and land uses in southeast Germany (Bavaria). Agric Ecosyst Environ 185,208–220 (2014)CrossRefGoogle Scholar
  67. Wiesmeier, M., Poeplau, C., Sierra, C.A., Maier, H., Frühauf, C., Hübner, R., Kühnel, A., Spörlein, P., Geuß, U., Hangen, E., Schilling, B., von Lützow, M., Kögel-Knabner, I.: Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: effects of climate change and carbon input trends. Scientific Reports 6, 32525 (2016)  https://doi.org/10.1038/srep32525
  68. Yang, X.Y., Ren, W.D., Sun, B.H., Zhang, S.L.: Effects of contrasting soil management regimes on total and labile soil organic carbon fractions in a loess soil in China. Geoderma 177,49–56 (2012)CrossRefGoogle Scholar

Weiterführende Literatur

  1. Hedges, J.I., Eglington, G., Hatcher, P.G., Kirchman, D.L., Arnosti, C., Derenne, S., Evershed, R.P., Kögel-Knabner, I., De Leeuw, J.W., Littke, R., Michaelis, W., Rullkötter, J.: The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31,945–958 (2000)CrossRefGoogle Scholar
  2. Jenkinson, D.S.: The turnover of organic carbon and nitrogen in soil. Phil Trans R Soc B 329,361–368 (1990)CrossRefGoogle Scholar
  3. Knicker, H.: How does fire affect the nature and stability of soil organic nitrogen and carbon? – a review. Biogeochem 85,91–118 (2007)CrossRefGoogle Scholar
  4. Kögel-Knabner, I.: A review on the macromolecular organic composition in plant and microbial residues as input to soil. Soil Biol Biochem 34,139–162 (2002b)CrossRefGoogle Scholar
  5. Kögel-Knabner, I., Guggenberger, G., Kleber, M., Kandeler, E., Kalbitz, K., Scheu, S., Eusterhues, K., Leinweber, P.: Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171,61–82 (2008b)CrossRefGoogle Scholar
  6. Marschner, B.S., Brodowski, A., Dreves, G., Gleixner, P.-M., Grootes, U., Hamer, A., Heim, G., Jandl, R., Ji, K., Kaiser, K., Kalbitz, C., Kramer, P., Leinweber, J., Rethemeyer, M.W.I., Schwark, Schmidt L., Wiesenberg, G.L.B.: How relevant is recalcitrance for the stabilization of organic matter in soils? J Plant Nutr Soil Sci 171,91–110 (2008)CrossRefGoogle Scholar
  7. Oades, J.M.: The retention of organic matter in soils. Biogeochem 5,35–70 (1988)CrossRefGoogle Scholar
  8. Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggen- berger, G., Janssens, I.A., Kleber, M., Kögel-Knabner, I., Lehmann, J., Manning, D.A., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E.: Persistence of soil organic matter as an ecosystem property. Nature 478,49–56 (2011)CrossRefGoogle Scholar
  9. Waksman, S.A.: Humus: origin, chemical composition and importance to nature. Baillière Tindall & Cox, London (1938)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Wulf Amelung
    • 1
    • 2
  • Hans-Peter Blume
    • 3
  • Heiner Fleige
    • 3
  • Rainer Horn
    • 3
  • Ellen Kandeler
    • 4
  • Ingrid Kögel-Knabner
    • 5
  • Ruben Kretzschmar
    • 6
  • Karl Stahr
    • 4
  • Berndt-Michael Wilke
    • 7
  1. 1.INRES – Allgemeine Bodenkunde und BodenökologieRheinische-Friedrich-Wilhelms-Universität BonnBonnDeutschland
  2. 2.Institut für Bio- und GeowissenschaftenAgrosphäre, Forschungszentrum Jülich GmbHJülichDeutschland
  3. 3.Institut für Pflanzenernährung und BodenkundeUniversität KielKielDeutschland
  4. 4.Institut für Bodenkunde und StandortslehreUniversität HohenheimStuttgartDeutschland
  5. 5.Lehrstuhl für BodenkundeTU MünchenFreising-WeihenstephanDeutschland
  6. 6.Institut für Biogeochemie und SchadstoffdynamikETH ZürichZürichSchweiz
  7. 7.Institut für ÖkologieTU BerlinBerlinDeutschland

Personalised recommendations