Multiplicative Transition Systems

Part of the Lecture Notes in Computer Science book series (LNCS, volume 10470)


The paper is concerned with algebras whose elements can be used to represent runs of a system. These algebras, called multiplicative transition systems, are partial categories with respect to a partial binary operation called multiplication. They can be characterized by axioms such that their elements and operations can be represented by partially ordered multisets of a certain type and operations on such multisets. The representation can be obtained without assuming a discrete nature of represented elements. In particular, it remains valid for systems with elements which can represent continuous and partially continuous runs.



The author is grateful to the referees for their remarks which helped to improve the final version of the paper.


  1. 1.
    Badouel, E., Darondeau, P.: Trace nets and process automata. Acta Inform. 32, 647–679 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ehrenfeucht, A., Rozenberg, G.: Partial 2-structures. Acta Inform. 27, 315–368 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ehrig, H., Kreowski, H.-J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 1976. LNCS, vol. 45, pp. 284–293. Springer, Heidelberg (1976). doi: 10.1007/3-540-07854-1_188 CrossRefGoogle Scholar
  4. 4.
    Lynch, N., Segala, R., Vaandrager, F.: Hybrid i/o automata. Inf. Comput. 185(1), 105–157 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mazurkiewicz, A.: Basic notions of trace theory. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 285–363. Springer, Heidelberg (1989). doi: 10.1007/BFb0013025 CrossRefGoogle Scholar
  6. 6.
    Mac Lane, S.: Categories for the Working Mathematician. Springer, New York (1971). doi: 10.1007/978-1-4757-4721-8 CrossRefzbMATHGoogle Scholar
  7. 7.
    Nielsen, M., Rozenberg, G., Thiagarajan, P.S.: Elementary transition systems. Theor. Comput. Sci. 96, 3–33 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Petri, C.A.: Introduction to general net theory. In: Brauer, W. (ed.) Net Theory and Applications. LNCS, vol. 84, pp. 1–19. Springer, Heidelberg (1980). doi: 10.1007/3-540-10001-6_21 CrossRefGoogle Scholar
  9. 9.
    Rozenberg, G., Thiagarajan, P.S.: Petri nets: basic notions, structure, behaviour. In: de Bakker, J.W., de Roever, W.-P., Rozenberg, G. (eds.) Current Trends in Concurrency. LNCS, vol. 224, pp. 585–668. Springer, Heidelberg (1986). doi: 10.1007/BFb0027048 CrossRefGoogle Scholar
  10. 10.
    Winkowski, J.: An algebraic characterization of independence of petri net processes. Inf. Process. Lett. 88, 73–81 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Winkowski, J.: An algebraic framework for defining behaviours of concurrent systems. Part 1: the constructive presentation. Fundamenta Informaticae 97, 235–273 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Winkowski, J.: An algebraic framework for defining behaviours of concurrent systems. Part 2: the axiomatic presentation. Fundamenta Informaticae 97, 439–470 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Winkowski, J.: Multiplicative transition systems. Fundamenta Informaticae 109(2), 201–222 (2011).
  14. 14.
    Winkowski, J.: An Algebraic Framework for Concurrent Systems. Monograph 2 in Monograph Series. Institute of Computer Science of the Polish Academy of Sciences, Warsaw (2014)Google Scholar
  15. 15.
    Winskel, G., Nielsen, M.: Models for concurrency. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 4, pp. 1–148 (1995)Google Scholar
  16. 16.
    Zorn, M.: A remark on method in transfinite algebra. Bull. Am. Math. Soc. 41, 667–670 (1935)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Computer Science of the Polish Academy of SciencesWarszawaPoland

Personalised recommendations