Skip to main content

Spherical Harmonics, Splines, and Wavelets

Definitoric Constituents, Strategic Perspectives, Specific Applicability and Applications

  • Chapter
  • First Online:
Mathematische Geodäsie/Mathematical Geodesy

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 1052 Accesses

Abstract

This contribution substantially represents a geodetically relevant collection of particularly valuable material in the diverse approximation areas involving spherical harmonics, splines, and wavelets, thereby establishing a consistent and unified setup. The goal of the work is to preferably convince members from geodesy that spherically oriented approximation provides a rich mathematical cornucopia that has much to offer to a large palette of applications. Geomathematically it reflects both the approximate shape of the Earth’s surface and the typical satellite geometry of a low Earth orbiter (LEO). Our essential interest is in reconstruction and decomposition characteristics corresponding to different types of data on spheres and various observables naturally occurring in geodetic context, when efficient and economic numerical realizations are required. Another objective is to provide an addition to the library of any individual interested in geodetically reflected local as well as global spherical approximation theory.

Zusammenfassung

Dieser Beitrag stellt eine geodätisch relevante Sammlung von besonders wertvollem Material in den diversen Approximationsgebieten dar, die mit Kugelfunktionen, Splines und Wavelets involviert sind, und zwar in einem konsistenten und vereinheitlichtem Gefüge. Das Ziel der Arbeit besteht darin vorzugsweise Geodäten zu überzeugen, dass sphärisch orientierte Approximation ein reiches mathematisches Füllhorn bereitstellt, welches viel für eine breite Palette von Anwendungen zu bieten hat. Geomathematisch spiegelt es sowohl die approximative Erdfigur als auch die typische Satellitengeometrie eines tief fliegenden Erdorbiters wider. Unser wesentliches Interesse liegt in den Charakteristiken der Rekonstruktion und Dekomposition der verschiedenen Datentypen auf Sphären und der natürlich im geodätischen Kontext auftretenden mannigfaltigen Observablen, soweit effiziente und ökonomische nummerische Realisationen gefordert sind. Ein weiteres Anliegen ist, eine Zusatzbibliothek für Interessenten in lokal sowie global geprägter sphärischer Approximationstheorie verfügbar zu machen.

This chapter is part of the series Handbuch der Geodäsie, volume “Mathematische Geodäsie/Mathematical Geodesy”, edited by Willi Freeden, Kaiserslautern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature

  1. Abeyratne, M.K., Freeden, W., Mayer, C.: Multiscale deformation analysis by Cauchy-Navier wavelets. J. Appl. Math. 12, 605–645 (2003)

    Google Scholar 

  2. Aldroubi, A., Gröchenig, K.: Nonuniform sampling and reconstruction in shift invariant spaces. SIAM Rev. 43, 585–620 (2001)

    Google Scholar 

  3. Aldroubi, A., Sun, Q., Tang, W-S.: ϱ-frames and shift-invariant subspaces on Lϱ. J. Fourier Anal. Appl. 7, 1–21 (2001)

    Google Scholar 

  4. Aldroubi, A., Sun, Q., Tang, W.-S.: Nonuniform average sampling and reconstruction in multiple generated shift-invariant spaces. Constr. Approx. 20, 173–189 (2004)

    Google Scholar 

  5. Aldroubi, A., Sun, Q., Tang, W.-S.: Convolution, average sampling and a calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl. 22, 215–244 (2005)

    Google Scholar 

  6. Antoine, J.-P., Demanet, L., Jaques, L., Vandergheynst, P.: Wavelets on the sphere: implementations and approximations. Appl. Comput. Harm. Anal. (ACHA) 13, 177–200 (2002)

    Google Scholar 

  7. Antoine, J.-P., Vandergheynst, P.: Wavelets on the 2-sphere: a group-theoretical approach. Appl. Comput. Harmon. Anal. (ACHA) 7, 1–30 (1999)

    Google Scholar 

  8. Augustin, M., Bauer, M., Blick, C., Eberle, S., Freeden, W., Gerhards, C., Ilyasov, M., Kahnt, R., Klug, M., Möhringer, S., Neu, T., Nutz, H., Ostermann, I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future perspectives. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, 2nd edn., pp. 1547–1629. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  9. Augustin, M., Freeden, W.: A survey on classical boundary value problems in physical geodesy. In: Grafarend E.W. (ed.) Encyclopedia of Geodesy. Springer International Publication, Switzerland (2016). https://doi.org/10.1007/978-3-319-02370-0-1117-1

    Google Scholar 

  10. Backus, G.E., Parker, R., Constable, C.: Foundations of Geomagnetism. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  11. Baratchart, L., Gerhards, C.: On the recovery of crustal and core components of geomagnetic potential fields. SIAM Appl. Math. (2017, submitted)

    Google Scholar 

  12. Barzaghi, R., Sansò, F.: Remarks on the inverse gravimetric problem. Boll. Geod. Scienze Affini 45, 203–216 (1986)

    Google Scholar 

  13. Bauer, F., Gutting, M.: Spherical fast multiscale approximation by locally compact orthogonal wavelets. GEM Int. J. Geomath. 2, 69–85 (2011)

    Google Scholar 

  14. Bayer, M., Freeden, W., Maier, T.: A vector wavelet approach to iono- and magnetospheric geomagnetic satellite data. J. Atmos. Sol. Terr. Phys. 63, 581–597 (2001)

    Google Scholar 

  15. Behmard, H., Faridani, A.: Sampling of bandlimited functions on unions of shifted lattices. J. Fourier Anal. Appl. 8, 43–58 (2001)

    Google Scholar 

  16. Behmard, H., Faridani, A., Walnut, D.: Construction of sampling theorems for unions of shifted lattices. Sampling Theory Signal Image Process. 5, 297–319 (2006)

    Google Scholar 

  17. Benedetto, J.J., Ferreira, P.J.S.G. (eds.): Modern Sampling Theory: Mathematics and Applications. Birkhäuser, Boston (2001)

    Google Scholar 

  18. Benedetto, J.J., Zayed, A.I. (eds.): Sampling, Wavelets, and Tomography. Birkhäuser, Boston (2003)

    Google Scholar 

  19. Bezhaev, A.Y., Vasilenko, V.A.: Variational Spline Theory. Russian Academy of Sciences, Sibirian Branch. Bulletin of the Novosibirsk Computing Center, NCC Publisher, Novosibirsk (1993)

    Google Scholar 

  20. Bi, N., Nashed, M.Z., Sun, Q.: Reconstructing signals with finite rate of innovation from noisy samples. Acta Appl. Math. 107, 309–372 (2009)

    Google Scholar 

  21. Blick, C.: Multiscale potential methods in geothermal research: decorrelation reflected post-processing and locally based inversion. Ph.D.-Thesis, University of Kaiserslautern, Geomathematics Group, Verlag Dr. Hut, Munich (2015)

    Google Scholar 

  22. Blick, C., Eberle, S.: Radio occultation via satellites. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 1089–1126. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  23. Blick, C., Freeden, W.: Spherical spline application to radio occultation data. J. Geodetic Sci. 1, 379–396 (2011)

    Google Scholar 

  24. Blick, C., Freeden, W., Nutz, H.: Feature extraction of geological signatures by multiscale gravimetry. GEM Int. J. Geomath. 8, 57–83 (2017)

    Google Scholar 

  25. Butzer, P.L.: A survey of the Whittaker Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition 3, 185–212 (1983)

    Google Scholar 

  26. Butzer, P.L., Splettstößer, W., Stens, R.L.: The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch. Math. Vereinigung (DMV) 90, 1–60 (1988)

    Google Scholar 

  27. Butzer, P.L., Stens, R.L.: The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Appl. 52/53, 141–155 (1983)

    Google Scholar 

  28. Butzer, P.L., Stens, R.L.: Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev. 34, 40–53 (1992)

    Google Scholar 

  29. Campbell, L.L.: A comparison of the sampling theorem of Kramer and Whittaker. SIAM 12, 117–130 (1964)

    Google Scholar 

  30. Choirat, C., Seri, R.: Computational aspects of Cui-Freeden statistics for equidistribution on the sphere. Math. Comput. 82, 2137–2156 (2013)

    Google Scholar 

  31. Cluny, F., Costarelli, D., Minotti, A, Vinti, G.: Enhancement of thermographic images as tool for structural analysis in eathquake engineering. NDT & E Int. 70, 60–72 (2015)

    Google Scholar 

  32. Cohen, L.: Time-Frequency Analysis. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  33. Cui, J., Freeden, W., Witte, B.: Gleichmäßige Approximation mittels sphärischer Finite-Elemente und ihre Anwendung auf die Geodäsie. Zeitschrift für Vermessungswesen 117, 266–278 (1992)

    Google Scholar 

  34. Dahlen, F.A., Simons, F.J.: Spectral estimation on a sphere in geophysics and cosmology. Geoph. J. Int. 174, 774–807 (2008)

    Google Scholar 

  35. Dahlke, S., Dahmen, W., Schmitt, E., Weinreich, I.: Multiresolution analysis and wavelets on \(\mathbb {S}^2\)and \(\mathbb {S}^3\). Numer. Funct. Anal. Optim. 16, 19–41 (1995)

    Google Scholar 

  36. Dahlke, S., Maass, P.: Continuous wavelet transforms with application to analyzing functions on spheres. J. Fourier Anal. Appl. 2, 379–396 (1996)

    Google Scholar 

  37. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Informat. Theory 34, 961–1005 (1988)

    Google Scholar 

  38. Daubechies, I.: Ten lectures on wavelets. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 61. SIAM, Philadelphia (1992)

    Google Scholar 

  39. Daubechies, I., Sweldens, W.: Factoring wavelet transform into lifting steps. In: Klees, R., Haagmans, R. (eds.) Wavelets in Geosciences. Lect. Notes Earth Sci. 90, 131–157 (1999)

    Google Scholar 

  40. Engl, H.: Integralgleichungen. Springer, Berlin (1997)

    Google Scholar 

  41. Engl, H., Louis, A.K., Rundell, W. (eds.): Inverse Problems in Geophysical Applications. SIAM, Philadelphia (1997)

    Google Scholar 

  42. Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Google Scholar 

  43. ESA (European Space Agency): The Nine Candidate Earth Explorer Missions. Publications Division ESTEC, Noordwijk, SP–1196(1) (1996)

    Google Scholar 

  44. ESA (European Space Agency): European Views on Dedicated Gravity Field Missions: GRACE and GOCE. ESD-MAG-REP-CON–001 (1998)

    Google Scholar 

  45. ESA (European Space Agency): Gravity Field and Steady-State Ocean Circulation Mission. ESTEC, Noordwijk, ESA (European Space Agency) SP–1233(1) (1999)

    Google Scholar 

  46. Fasshauer, G.E., Schumaker, L.L.: Scattered data fitting on the sphere. In: Dahlen, M., Lyche, T., Schumaker L.L. (eds.) Mathematical Methods for Curves and Surfaces II, pp. 117–166. Vanderbilt University, Nashville (1998)

    Google Scholar 

  47. Fehlinger, T., Freeden, W., Gramsch, S., Mayer, C., Michel, D., Schreiner, M.: Local modelling of sea surface topography from (Geostrophic) ocean flow. ZAMM 87, 775–791 (2007)

    Google Scholar 

  48. Feichtinger, H.G., Gröchenig, K.: Theory and practice of irregular sampling. In: Benedetto, J.J., Frazier, M.W. (eds.) Wavelets: Mathematics and Applications, pp. 305–363. CRC Press, Boca Raton (1993)

    Google Scholar 

  49. Fengler, M., Freeden, W.: A nonlinear Galerkin scheme involving vector and tensor spherical harmonics for solving the incompressible Navier-Stokes equation on the sphere. SIAM J. Sci. Comput. 27, 967–994 (2005)

    Google Scholar 

  50. Fengler, M., Freeden, W., Gutting, M.: The spherical Bernstein wavalets. Int. J. Pure Appl. Math. 31, 209–230 (2006)

    Google Scholar 

  51. Fengler, M.J., Michel, D., Michel, V.: Harmonic spline-wavelets on the 3-dimensional ball and their application to the reconstruction of the earth’s density distribution from gravitational data at arbitrarily shaped satellite orbits. ZAMM 86, 856–873 (2006)

    Google Scholar 

  52. Fogel, L.J.: A note on the sampling theorem. IRE Trans. Inf. Theory IT 1, 47–48 (1955)

    Google Scholar 

  53. Freeden, W.: An application of a summation formula to numerical computation of integrals over the sphere. Bull. Géod. 52, 165–175 (1978)

    Google Scholar 

  54. Freeden, W.: On the approximation of external gravitational potential with closed systems of (Trial) functions. Bull. Géod. 54, 1–20 (1980)

    Google Scholar 

  55. Freeden, W.: On spherical spline interpolation and approximation. Math. Meth. Appl. Sci. 3, 551–575 (1981)

    Google Scholar 

  56. Freeden, W.: On approximation by harmonic splines. Manuscr. Geod. 6, 193–244 (1981)

    Google Scholar 

  57. Freeden, W.: Interpolation and best approximation by harmonic spline functions – theoretical and computational aspects. Boll. Geod. Scienze Affini 41, 106–120 (1982)

    Google Scholar 

  58. Freeden, W.: On the permanence property in spherical spline interpolation. Department of Geodetic Science, The Ohio State University, Columbus, Ohio, OSU Report No. 341 (1982)

    Google Scholar 

  59. Freeden, W.: On spline methods in geodetic approximation problems. Math. Methods Appl. Sci. 4, 382–396 (1982)

    Google Scholar 

  60. Freeden, W.: A spline interpolation method for solving boundary value problems of potential theory from discretely known data. Numer. Math. Partial Diff. Equ. 3, 375–398 (1987)

    Google Scholar 

  61. Freeden, W.: Metaharmonic splines for solving the exterior Dirichlet problem of the Helmholtz equation. In: Utreras, F., Chui, C.K., Schumaker, L.L. (eds.) Topics in Approximation Theory, pp. 99–110. Academic, Boston (1987)

    Google Scholar 

  62. Freeden, W.: Spherical spline approximation and its application in physical geodesy. In: Vogel, A., Ofeagbu, C.O., Gorenflo, R., Ursin, B., (eds.) Geophysical Data Inversion Methods and Applications, pp. 79–104. Vieweg Publication, Braunschweig (1990)

    Google Scholar 

  63. Freeden, W.: Multiscale Modelling of Spaceborne Geodata. B.G. Teubner, Stuttgart/Leipzig (1999)

    Google Scholar 

  64. Freeden, W.: Geomathematik, was ist das überhaupt? Jahresb. Deutsch. Mathem. Vereinigung (DMV) 111, 125–152 (2009)

    Google Scholar 

  65. Freeden, W.: Geomathematics: its role, its aim, and its potential. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 3–78. Springer, Heidelberg (2015)

    Google Scholar 

  66. Freeden, W., Blick, C.: Signal decorrelation by means of multiscale methods. World of Mining 65, 1–15 (2013)

    Google Scholar 

  67. Freeden, W., Fehlinger, T., Klug, M., Mathar, D., Wolf, K.: Classical globally reflected gravity field determination in modern locally oriented multiscale framework. J. Geod. 83, 1171–1191 (2009)

    Google Scholar 

  68. Freeden, W., Gerhards, C.: Poloidal and toroidal fields in terms of locally supported vector wavelets. Math. Geosc. 42, 817–838 (2010)

    Google Scholar 

  69. Freeden, W., Gerhards, C.: Geomathematically Oriented Potential Theory. Chapman and Hall/CRC Press, Boca Raton/New York/London (2013)

    Google Scholar 

  70. Freeden, W., Gerhards, C., Nutz, H., Schreiner, M.: Disturbing potential from deflections of the vertical: from globally reflected surface gradient equation to locally oriented multiscale modeling. In: Grafarend E.W. (ed.) Encyclopedia of Geodesy. Springer, International Publications Switzerland (2016)

    Google Scholar 

  71. Freeden, W., Gervens, T., Mason, J.C.: A minimum norm interpolation method for determining the displacement field of a homogeneous isotropic elastic body from discrete data. IMA J. App. Math. 44, 55–76 (1990)

    Google Scholar 

  72. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford Science Publications, Clarendon/Oxford (1998)

    Google Scholar 

  73. Freeden, W., Groten, E., Schreiner, M., Söhne, M., Tücks, M.: Deformation analysis using Navier spline interpolation (with an application to the Lake Blåsjö area). Allgemeine Vermessungs – Nachrichten (AVN) 3, 120–146 (1996)

    Google Scholar 

  74. Freeden, W., Gutting, M.: Special Functions of Mathematical (Geo)Physics. Birkhäuser, Basel (2013)

    Google Scholar 

  75. Freeden, W., Gutting, M.: Integration and Cubature Methods – A Geomathematically Oriented Course. Chapman and Hall/CRC Press, Boca Raton/New York/London (2018)

    Google Scholar 

  76. Freeden, W., Hesse, K.: On the multiscale solution of satellite problems by use of locally supported Kernel functions corresponding to equidistributed data on spherical orbits. Studia Scient. Math. Hungarica 39, 37–74 (2002)

    Google Scholar 

  77. Freeden, W., Maier, T.: On multiscale denoising of spherical functions: basic theory and numerical aspects. Electron. Trans. Numer. Anal. (ETNA) 14, 40–62 (2002)

    Google Scholar 

  78. Freeden, W., Mason, J.C.: Uniform piecewise approximation on the sphere. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation II, pp. 320–333. Chapman and Hall, New York (1990)

    Google Scholar 

  79. Freeden, W., Mayer, C.: Wavelets generated by layer potentials. Appl. Comput. Harmon. Anal. (ACHA) 14, 195–237 (2003)

    Google Scholar 

  80. Freeden, W., Mayer, C.: Multiscale solution for the Molodensky problem on regular telluroidal surfaces. Acta Geod. Geophys. Hung. 41, 55–86 (2006)

    Google Scholar 

  81. Freeden, W., Mayer, C., Schreiner, M.: Tree algorithms in wavelet approximation by Helmholtz potential operators. Numer. Funct. Anal. Optim. 4, 747–782 (2003)

    Google Scholar 

  82. Freeden, W., Michel, D., Michel, V.: Local multiscale approximation of geostrophic oceanic flow: theoretical background and aspects of scientific computing. Marine Geod. 28:313–329 (2005)

    Google Scholar 

  83. Freeden, W., Michel, V.: Orthogonal zonal, tesseral, and sectorial wavelets on the sphere for the analysis of satellite data. Adv. Comput. Math. 21, 187–217 (2004)

    Google Scholar 

  84. Freeden, W., Michel, V.: Multiscale Potential Theory (With Applications to Geoscience). Birkhäuser, Boston (2004)

    Google Scholar 

  85. Freeden, W., Michel, V.: Wavelet deformation analysis for spherical bodies. Int. J. Wavelets Multiresolution Inf. Process. (IJWMIP) 3, 523–558 (2005)

    Google Scholar 

  86. Freeden, W., Michel, V., Nutz, H.: Satellite-to-satellite tracking and satellite gravity gradiometry (advanced techniques for high-resolution geopotential field determination). J. Eng. Math. 43, 19–56 (2002)

    Google Scholar 

  87. Freeden, W., Michel, V., Simons, F.J.: Spherical harmonics based special function systems and constructive approximation methods. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Springer International Publishing, Basel/New-York/Heidelberg (2018)

    Google Scholar 

  88. Freeden, W., Nashed, M.Z.: Multivariate Hardy-type lattice point summation and Shannon-type sampling. GEM Int. J. Geomath. 6, 163–249 (2015)

    Google Scholar 

  89. Freeden, W., Nashed, M.Z.: Operator-theoretic and regularization approaches to ill-posed problems. GEM Int. J. Geomath. (2017). https://doi.org/10.1007/s13137-017-0100-0

    Google Scholar 

  90. Freeden, W., Nashed, M.Z., Schreiner, M.: Spherical Sampling. Geosystem Mathematics. Birkhäuser, Basel (2018)

    Google Scholar 

  91. Freeden, W., Nashed, M.Z.: Lattice Point Identities and Shannon-Type Sampling. Chapman Hall/CRC Press, Boca Raton/New york, London (2020)

    Google Scholar 

  92. Freeden, W., Nutz, H.: Satellite gravity gradiometry as tensorial inverse problem. GEM Int. J. Geomath. 2, 177–218 (2011)

    Google Scholar 

  93. Freeden, W., Nutz, H.: Mathematik als Schlüsseltechnologie zum Verständnis des Systems “Tiefe Geothermie”. Jahresber. Deutsch. Math. Vereinigung (DMV) 117, 45–84 (2015)

    Google Scholar 

  94. Freeden, W., Reuter, R.: Spherical harmonic splines: theoretical and computational aspects. Meth. u. Verf. d. Math. Physik 27, 79–103 (1988)

    Google Scholar 

  95. Freeden, W., Reuter, R.: A constructive method for solving the displacement boundary value problem of elastostatics by use of global basis systems. Math. Methods Appl. Sci. 12, 105–128 (1990)

    Google Scholar 

  96. Freeden, W., Schneider, F.: Wavelet approximation on closed surfaces and their application to boundary value problems of potential theory. Math. Methods Appl. Sci. 21, 129–163 (1998)

    Google Scholar 

  97. Freeden, W., Schneider, F.: Regularization wavelets and multiresolution. Inverse Prob. 14, 225–243 (1998)

    Google Scholar 

  98. Freeden, W., Schneider, F., Schreiner, M.: Gradiometry – an inverse problem in modern satellite geodesy. In: Engl, H.W., Louis, A., Rundell, W. (eds.) GAMM-SIAM Symposium on Inverse Problems: Geophysical Applications, pp. 179–239 (1997)

    Google Scholar 

  99. Freeden, W., Schreiner, M.: Non-orthogonal expansions on the sphere. Math. Methods Appl. Sci. 18, 83–120 (1995)

    Google Scholar 

  100. Freeden, W., Schreiner, M.: Spaceborne gravitational field determination by means of locally supported wavelets. J. Geod. 79, 431–446 (2005)

    Google Scholar 

  101. Freeden, W., Schreiner, M.: Multiresolution analysis by spherical up functions. Constr. Approx. 23, 241–259 (2006)

    Google Scholar 

  102. Freeden, W., Schreiner, M.: Spherical Functions of Mathematical Geosciences – A Scalar, Vecterial, and Tensorial Setup. Springer, Heidelberg (2009)

    Google Scholar 

  103. Freeden, W., Schreiner, M.: Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 269–302. Springer, Heidelberg (2010)

    Google Scholar 

  104. Freeden, W., Schreiner, M.: Satellite gravity gradiometry (SGG): from scalar to tensorial solution. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn. Springer, New-York/Heidelberg (2015)

    Google Scholar 

  105. Freeden, W., Schreiner, M., Franke, R.: A survey on spherical spline approximation. Surv. Math. Ind. 7, 29–85 (1996)

    Google Scholar 

  106. Freeden, W., Windheuser, U.: Spherical wavelet transform and its discretization. Adv. Comput. Math. 5, 51–94 (1996)

    Google Scholar 

  107. Freeden, W., Windheuser, U.: Combined spherical harmonic and wavelet expansion. Appl. Comp. Harm. Anal. (ACHA) 4, 1–37 (1997)

    Google Scholar 

  108. Freeden, W., Witte, B.: A combined (spline-)interpolation and smoothing method for the determination of the gravitational potential from heterogeneous data. Bull. Géod. 56, 53–62 (1982)

    Google Scholar 

  109. Freeden, W., Wolf, K.: Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Math. Semesterb. 56, 53–77 (2008)

    Google Scholar 

  110. Gauß, C.F.: Allgemeine Theorie des Erdmagnetismus. Resultate aus den Beobachtungen des magnetischen Vereins (1838)

    Google Scholar 

  111. Gerhards, C.: Spherical multiscale methods in terms of locally supported wavelets: theory and application to geomagnetic modeling. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern (2011)

    Google Scholar 

  112. Gerhards, C.: Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. GEM Int. J. Geomath. 1, 205–256 (2011)

    Google Scholar 

  113. Gerhards, C.: A combination of downward continuation and local approximation for harmonic potentials. Inverse Prob. 30, 085004 (2014)

    Google Scholar 

  114. Gerhards, C.: A multiscale power spectrum for the analysis of the lithospheric magnetic field. GEM Int. J. Geomath. 5, 63–79 (2014)

    Google Scholar 

  115. Gerhards, C.: Multiscale modeling of the geomagnetic field and ionospheric currents. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn. Springer (2015). https://doi.org/10.1007/978-3-642-27793-118-4

  116. Groetsch, C.W.: Inverse Problems in the Mathematical Science. Vieweg, Braunschweig (1993)

    Google Scholar 

  117. Gutting, M.: Fast multipole methods for oblique derivative problems. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2008)

    Google Scholar 

  118. Gutting, M.: Fast multipole accelerated solution of the oblique derivative boundary value problem. GEM Int. J. Geomath. 3, 223–252 (2012)

    Google Scholar 

  119. Gutting, M.: Fast spherical/harmonic spline modeling. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn. Springer, Heidelberg (2014)

    Google Scholar 

  120. Gutting, M.: Parameter choices for fast harmonic spline approximation. In: Freeden, W., Nashed, M.Z. (eds.) Handbook of Mathematical Geodesy. Geosystems Mathematics. Birkhäuser, Basel (2018)

    Google Scholar 

  121. Göttelmann, J.: Locally supported wavelets on manifolds with applications to the 2D sphere. Appl. Comput. Harmon. Anal. (ACHA) 7, 1–33 (1999)

    Google Scholar 

  122. Haddad, R.A., Parsons, T.W.: Digital Signal Processing: Theory, Applications and Hardware. Computer Science Press, New York (1991)

    Google Scholar 

  123. Han, D., Nashed, M.Z., Sun, Q.: Sampling expansions in reproducing Kernel Hilbert and Banach spaces. Num. Funct. Anal. Optim. 30, 971–987 (2009)

    Google Scholar 

  124. Harbrecht, H., Schneider, R.: Wavelet Galerkin schemes for boundary integral equations – implementation and quadrature. SIAM J. Sci. Comput. 27, 1347–1370 (2006)

    Google Scholar 

  125. Heiskanen, W.A., Moritz, H.: Physical Geodesy. Freeman, San Francisco (1967)

    Google Scholar 

  126. Hesse, K.: Domain decomposition methods in multiscale geopotential determination from SST and SGG. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern, Shaker (2002)

    Google Scholar 

  127. Hesse, K., Sloan, I.H., Womersley, R.S.: Numerical integration on the sphere. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn., pp. 2671–2710. Springer, Heidelberg (2015)

    Google Scholar 

  128. Higgins, J.R.: Five short stories about the cardinal series. Bull. Am. Math. Soc. 12, 45–89 (1985)

    Google Scholar 

  129. Higgins, J.R.: Sampling theory in Fourier and signal analysis, volume 1: foundations. Oxford University Press, Oxford (1996)

    Google Scholar 

  130. Higgins, J.R., Stens, R.L.: Sampling theory in Fourier and signal analysis, volume 2: advanced topics. Oxford Science Publications, Oxford (2000)

    Google Scholar 

  131. Holschneider, M.: Continuous wavelet transforms on the sphere. J. Math. Phys. 37, 4156–4165 (1996)

    Google Scholar 

  132. Ilk, K., Flury, J., Rummel, R., Schwintzer, P., Bosch, W., Haas, C., Schröter, J., Stammer, D., Zahel, W., Miller, H., Dietrich, R., Huybrechts, P., Schmeling, H.D., Wolf, H.G., Rieger, J., Bardossy, A., Güntner, A., Gruber, T.: Mass transport and mass distribution in the earth system, contribution of the new generation of satellite gravity and altimetry missions to geosciences. GOCE-Projektbüro TU Munich, GeoForschungsZentrum Potsdam (2005) http://gfzpublic.gfz-potsdam.de/pubman/faces/viewItemOverview, Cited 01 Oct 2017

  133. Imiya, A., Sugaya, H., Torii, A., Mochizuki, Y.: Variational analysis of spherical images. In: Gagalowicz, W., Philips, W. (eds.) Computer Analysis of Images and Patterns. Lecture Notes in Computer Science, vol. 3691, pp. 104–111. Springer, Berlin/Heidelberg (2005)

    Google Scholar 

  134. Ismail, M., Nashed, M.Z., Zayed, A., Ghaleb, A.: Mathematical Analysis, Wavelets and Signal Processing. Contemporary Mathematics, vol. 190. American Mathematical Society, Providence (1995)

    Google Scholar 

  135. Jansen, M., Oonincx, P.: Second Generation Wavelets and Applications. Springer, Berlin (2005)

    Google Scholar 

  136. Jarosz, W., Carr, N.A., Jensen, W.W.: Importance Sampling Spherical Harmonics. Eurographics 28, 2 (2009)

    Google Scholar 

  137. Jerri, J.A.: On the application of some interpolating functions in physics. J. Res. Nat. Bur. Standards Sect. B 73, 241–245 (1969)

    Google Scholar 

  138. Jerri, J.A.: Sampling expansion for Laguerre L 2-transforms. J. Res. Nat. Bur. Standards Sect. B 80, 415–418 (1976)

    Google Scholar 

  139. Jerri, J.A.: The Shannon sampling theorem – its various extensions and applications: a tutorial review. Proc. IEEE 65, 1565–1596 (1977)

    Google Scholar 

  140. Kalker, T.: On multidimensional sampling. In: Madisetti, V.K., Williams D.B. (eds.) Digital Signal Processing Handbook. CRC Press, Boca Raton (1999)

    Google Scholar 

  141. Keller, W.: Satellite-to-satellite tracking (low-low/high-low). In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 171–210. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  142. Khalid, Z., Durrani, S., Sadeghi, P., Kennedy, R.A.: Spatio-spectral analysis on the sphere using spatially localized spherical harmonics transform. IEEE Trans. Signal Process. 60, 1487–1492 (2012)

    Google Scholar 

  143. Kirisits, C., Lang, L.F., Scherzer, O.: Optical flow on evolving surfaces with an application at the analysis of 4D microscopy data. In: Kuijoer, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM’13: Proceedings of the Fourth International Conference on Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 7893, pp. 246–257. Springer, Berlin/Heidelberg (2013)

    Google Scholar 

  144. Kirisits, C., Lang, L.F., Scherzer, O.: Decomposition of optical flow on the sphere. GEM. Int. J. Geomath. 5, 117–141 (2014)

    Google Scholar 

  145. Kirisits, C., Lang, L.F., Scherzer, O.: Optical flow on evolving surfaces with space and time regularisation. J. Math. Imaging Vision 52, 55–70 (2015)

    Google Scholar 

  146. Kirsch, A.: An Introduction to the Mathematical Theory of Inverse Problems. Springer, Heidelberg (1996)

    Google Scholar 

  147. Klees, R., Haagmans, R. (eds.): Wavelets in the Geosciences. Lecture Notes in Earth Sciences, vol. 90. Springer, Berlin/Heidelberg (2000)

    Google Scholar 

  148. Konopliv, A.S., Asmar, S.W., Carranza, E., Sjogren, W.L., Yuan, D.N.: Recent gravity models as a result of the lunar prospector mission. Icarus 150, 1–18 (2001)

    Google Scholar 

  149. Kotel’nikov, V.A.: On the carrying capacity of the “Ether” and “Wire” in telecommunications. In: Material for the First All-Union Conference on Questions of Communications, Izd. Red.Upr. Svyazi RKKA, Moscow (1933)

    Google Scholar 

  150. Kotsiaros, S., Olson, N.: The geomagnetic field gradient tensor. GEM Int. J. Geomath. 3, 297–314 (2012)

    Google Scholar 

  151. Kramer, H.P.: A generalized sampling theorem. J. Math. Phys. 38, 68–72 (1959)

    Google Scholar 

  152. Kunoth, A., Sahner, J.: Wavelets on manifolds: an optimized construction. Math. Comput. 75, 1319–1349 (2006)

    Google Scholar 

  153. Lain Fernández, N.: Polynomial bases on the sphere. Ph.D.-Thesis, University of Lübeck, Logos, Berlin (2003)

    Google Scholar 

  154. de Laplace, P.S.: Theorie des attractions des sphéroides et de la figure des planètes. Mèm. de l’Acad. Paris (1785)

    Google Scholar 

  155. Larson, D., Massopust, P., Nashed, M.Z., Nguyen, M.C., Papadakis, M., Zayed, A. (eds.): Frames and Operator Theory in Analysis and Signal Processing. Contemporary Mathematics, vol. 451. American Mathematical Society, Providence (2008)

    Google Scholar 

  156. Legendre, A.M.: Recherches sur l’attraction des sphèroides homogènes. Mèm. math. phys. près. à l’Acad. Aci. par. divers savantes 10, 411–434 (1785)

    Google Scholar 

  157. Lemoine, F.G., Kenyon, S.C., Factor, J.K., Trimmer, R.G., Pavlis, N.K., Shinn, D.S., Cox, C.M., Klosko, S.M., Luthcke, S.B., Torrence, M.H., Wang, Y.M., Williamson, R.G., Pavlis, E.C., Rapp, R.H., Olson, T.R.: The development of the joint NASA GSFC and NIMA geopotential model EGM96. NASA/TP-1998-206861. NASA Goddard Space Flight Center, Greenbelt (1998)

    Google Scholar 

  158. Louis, A.K.: Inverse und schlecht gestellte Probleme. Teubner, Stuttgart (1989)

    Google Scholar 

  159. Lyche, T., Schumaker, L.L.: A multiresolution tensor spline method for fitting functions on the sphere. SIAM J. Sci. Comput. 22, 724–74 (2000)

    Google Scholar 

  160. Lüke, H.D.: The origins of the sampling theorem. IEEE Commun. Mag. 37, 106–108 (1999)

    Google Scholar 

  161. Maier, T.: Multiscale geomagnetic field modelling from satellite data: theoretical aspects and numerical applications. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern (2003)

    Google Scholar 

  162. Maier, T.: Wavelet-Mie-representations for solenoidal vector fields with applications to ionospheric geomagnetic data. SIAM J. Appl. Math. 65, 1888–1912 (2005)

    Google Scholar 

  163. Mallat, S.: Applied mathematics meets signal processing. In: Proceedings of the International Congress of Mathematicians, Berlin, vol. I, pp. 319–338. Documenta Mathematica (1998)

    Google Scholar 

  164. Marks II, R.J.: Introduction to Shannon sampling and interpolation theory. Springer, Berlin (1991)

    Google Scholar 

  165. Marks II, R.J.: Advanced topics in Shannon sampling and interpolation theory. Springer. Berlin/Heidelberg (1993)

    Google Scholar 

  166. Marvasti, F.A. (ed.): Nonuniform Sampling: Theory and Practice. Information Technology Transmission, Processing, and Storage. Plenum Publishing Corporation, New York (2001)

    Google Scholar 

  167. Mayer, C.: Wavelet modelling of ionospheric currents and induced magnetic fields from satellite data. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern (2003)

    Google Scholar 

  168. Mayer, C.: Wavelet modelling of the spherical inverse source problem with application to geomagnetism. Inverse Prob. 20, 1713–1728 (2004)

    Google Scholar 

  169. Mayer, C.: Wavelet decomposition of spherical vector fields with respect to sources. J. Fourier Anal. Appl. 12, 345–369 (2006)

    Google Scholar 

  170. Mayer, C., Freeden, W.: Stokes problems, layer potentials and regularizations, and multiscale applications. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 2, 2nd edn., pp. 1155–1253. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  171. Mayer, C., Maier, T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006)

    Google Scholar 

  172. McEwen, J.D., Puy, G., Thiran, J.-P., Vandergheinst, P.: In: Papadakis, M., van de Ville, D., Goyal, V.K. (eds.) Sampling theorems and compressive sensing on the sphere. Wavelets and Sparsity XIV. Proceedings of SPIE, vol. 8138, pp. F1–F9 (2011)

    Google Scholar 

  173. McEwen, J.D., Puy, G., Thiran, J.-P., Vandergheinst, P.: Sparse image reconstruction on the sphere: implications of a new sampling theorem. IEEE Tans. Image Process. 22, 1–11 (2013)

    Google Scholar 

  174. McEwen, J.D., Wiaux, Y.: A novel sampling theorem on the sphere. IEEE Trans. Sig. Process. 59, 1–13 (2011)

    Google Scholar 

  175. van der Mee, C.V., Nashed, M.Z., Seatzu, S.: Sampling expansions and interpolation in unitarily translation invariant reproducing kernel Hilbert space. Adv. Comput. Math. 19, 355–372 (2003)

    Google Scholar 

  176. Meeks, R.: Introduction to Shannon Sampling and Interpolation Theory. Springer, New York (1991)

    Google Scholar 

  177. Meeks, R.: Advanced Topics in Shanon Sampling and Interpolation Theory. Springer, New York (1993)

    Google Scholar 

  178. Melani, C., Campana, M., Lombardot, B., Rizzi, B., Veronesi, F., Zanella, C., Bourgine, P., Mikula, K., Peyrieras, N., Sarti, A.: Cells tracking in a live Zebrafish embryo. In: Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Sociology Society (EMBS 2007), pp. 1631–1634 (2007)

    Google Scholar 

  179. Mhaskar, H.N., Narcowich, F.J., Prestin, J., Ward, J.D.: Polynomial frames on the sphere. Adv. Comput. Math. 3, 378–403 (2003)

    Google Scholar 

  180. Michel, V.: A multiscale method for the gravimetry problem: theoretical and numerical aspects of harmonic and anharmonic modelling. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (1999)

    Google Scholar 

  181. Michel, V.: A multiscale approximation for operator equations in separable Hilbert spaces – case study: reconstruction and description of the earth’s interior. Habilitation Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2002)

    Google Scholar 

  182. Michel, V.: Scale continuous, scale discretized and scale discrete harmonic wavelets for the outer and the inner space of a sphere and their application to an inverse problem in geomathematics. Appl. Comput. Harm. Anal. (ACHA) 12, 77–99 (2002)

    Google Scholar 

  183. Michel, V.: Regularized wavelet-based multiresolution recovery of the harmonic mass density distribution from data of the earth’s gravitational field at satellite height. Inverse Prob. 21, 997–1025 (2005)

    Google Scholar 

  184. Michel, V.: Lectures on Constructive Approximation – Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball. Birkhäuser, Boston (2013)

    Google Scholar 

  185. Michel, V., Wolf, K.: Numerical aspects of a spline-based multiresolution recovery of the harmonic mass density out of gravity functionals. Geophys. J. Int. 173, 1–16 (2008)

    Google Scholar 

  186. Moritz, H.: Classical physical geodesy. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, pp. 253–290. Springer, Heidelberg (2015)

    Google Scholar 

  187. Moritz, H., Sünkel, H. (eds.): Approximation Methods in Geodesy. Lectures delivered at 2nd International Summer School in the Mountains on Mathematical Methods in Physical Geodesy. Wichmann, Karlsruhe (1978)

    Google Scholar 

  188. Müller, C.: Analysis of Spherical Symmetries in Euclidean Spaces. Springer, New York/Berlin/Heidelberg (1998)

    Google Scholar 

  189. Narcowich, F., Petrushev, P., Ward, J.: Localized tight frames on spheres. SIAM J. Math. Anal. 38, 574–594 (2006)

    Google Scholar 

  190. Narcowich, F.J., Ward, J.D.: Nonstationary wavelets on the m-sphere for scattered data. Appl. Comput. Harm. Anal. (ACHA) 3, 324–336 (1996)

    Google Scholar 

  191. Narcowich, F.J., Ward, J.D.: Scattered data interpolation on spheres: error estimates and locally supported basis functions. SIAM J. Math. Anal. 33, 1393–1410 (2002)

    Google Scholar 

  192. Nashed, M.Z. (ed.): Generalized Inverses and Applications. Academic, New York (1976)

    Google Scholar 

  193. Nashed, M.Z.: Inverse problems, moment problems. In: Siddiqi, A.H., Singh, R.C., Manchanda, P. (eds.) Signal Processing: Un Menage a Trois. Mathematics in Science and Technology, pp. 1–19. World Scientific, Singapore (2010)

    Google Scholar 

  194. Nashed, M.Z., Scherzer, O.: Inverse Problems, Image Analysis and Medical Imaging. Contemporary Mathematics, vol. 313. American Mathematical Society, Providence (2002)

    Google Scholar 

  195. Nashed, M.Z., Sun, Q.: Sampling and reconstruction of signals in a reproducing Kernel subspace of \(L^\varrho (\mathbb {R}^d)\). J. Function. Anal. 258, 2422–2452 (2010)

    Google Scholar 

  196. Nashed, M.Z., Sun, Q., Tang, W.S.: Average sampling in L 2. Can. Acad. Sci. Ser. 1 347, 1007–1010 (2009)

    Google Scholar 

  197. Nashed, M.Z., Walter, G.G.: General sampling theorems for functions in reproducing Kernel Hilbert space. Math. Contr. Signals Syst. 4, 363–390 (1991)

    Google Scholar 

  198. Nashed, M.Z., Walter, G.G.: Reproducing Kernel Hilbert space from sampling expansions. Contemp. Math. 190, 221–226 (1995)

    Google Scholar 

  199. Nerem, R.S., Tapley, B.D., Shum, C.K.: A general ocean circulation model determined in a simultaneous solution with the Earth’s gravity field. In: Sünkel, H., Baker, T. (eds.) Sea Surface Topography and the Geoid. International Association of Geodesy Symposia, vol. 104, pp. 158–199. Springer, New York (1990)

    Google Scholar 

  200. Nutz, H.: A unified setup of gravitational field observables. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2002)

    Google Scholar 

  201. Nutz, H., Wolf, K.: Multiresolution analysis of hydrology and satellite gravitational data. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, 2nd edn., pp. 497–518. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  202. Olsen, N., Glassmeier, K.-H., Jia, X.: Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152, 159–222 (2010)

    Google Scholar 

  203. Olsen, N., Hulot, G., Sabaka, T.J.: Sources of the geomagnetic field and the modern data that enable their investigation. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 1, pp. 106–124. Springer, Heidelberg (2010)

    Google Scholar 

  204. Papoulis, A.: Error analysis in sampling theory. Proc. IEEE 54, 947–955 (1966)

    Google Scholar 

  205. Papoulis, A.: Generalized sampling expansion. IEEE Trans. Circ. Syst. 24, 652–654 (1977)

    Google Scholar 

  206. Parzen, E.: A simple proof and some extensions of the sampling theorem. Technical Report No. 7, Department of Statistics, Stanford University, pp. 1–10 (1956)

    Google Scholar 

  207. Pavlis, N.K., Holmes, S.A., Kenyon, S.C., John K., Factor, J.K.: The development and evaluation of the earth gravitational model 2008 (EGM2008). J. Geophys. Res. Solid Earth (1978–2012) 117(B4), 04406 (2012)

    Google Scholar 

  208. Pesenson, I.: Splines and wavelets on geophysically relevant manifolds. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, vol. 3, 2nd edn., pp. 2527–2562. Springer, New York/Berlin/Heidelberg (2015)

    Google Scholar 

  209. Petersen, D.P., Middleton, D.: Sampling and reconstruction of wave-number-limited functions in N-dimensional Euclidean spaces. Inf. Control. 5, 279–323 (1962)

    Google Scholar 

  210. Plattner, A., Simons, F.J.: Spatiospectral concentration of vector fields on a sphere. Appl. Comput. Harmon. Anal. (ACHA) 36, 1–22 (2014)

    Google Scholar 

  211. Potts, D., Steidl, G., Tasche, M.: Fast Fourier transforms for nonequispaced data: a tutorial, modern sampling theory. Appl. Numer. Harmon. Anal. (ACHA) 22, 247–270 (2001)

    Google Scholar 

  212. Potts, D., Tasche, M.: Interpolatory wavelets on the sphere. In: Chui, C.K., Schumaker, L.L. (eds.) Approximation Theory VIII, vol. 2, pp. 335–342. World Scientific, Singapore (1995)

    Google Scholar 

  213. Raabe, H.: Untersuchungen an der wechselseitigen Mehrfachübertragung (Multiplexübertragung). Elektrische Nachrichtentechnik 16, 213–228 (1939)

    Google Scholar 

  214. Rauhut, H., Ward, R.: Sparse recovery for spherical harmonic expansions. In: Proceedings of the SampTA, pp. 1–4 (2011)

    Google Scholar 

  215. Rawn, M.D.: Generalized sampling theorems for bessel-type transformations of band-limited functions and distributions. SIAM J. Appl. Math. 49, 638–649 (1989)

    Google Scholar 

  216. Reimer, M.: Multivariate Polynomial Approximation. Birkhäuser, Basel/Boston/Berlin (2003)

    Google Scholar 

  217. Reuter, R.: Über Integralformeln der Einheitssphäre und harmonische Splinefunktionen. PhD-Thesis, Veröff. Geod. Inst. RWTH Aachen, Report No. 33 (1982)

    Google Scholar 

  218. Rummel, R.: Spherical spectral properties of the Earth’s gravitational potential and its first and second derivatives. In: Rummel, R., Sanso, F. (eds.) Lecture Notes in Earth Science, vol. 65, pp. 359–404. Springer, Berlin (1997)

    Google Scholar 

  219. Rummel, R.: Geodetic boundary value problems in view of the one centimeter geoid. In: Rummel, R., Sansò, F. (eds.) Lecture Notes in Earth Sciences, vol. 65. Springer, Berlin/Heidelberg (1997)

    Google Scholar 

  220. Rummel, R., Balmino, G., Johannessen, J., Visser, P., Woodworth P.: Dedicated gravity field missions – principles and aims. J. Geodyn. 33, 3–20 (2002)

    Google Scholar 

  221. Rummel, R., van Gelderen, M.: Meissl scheme-spectral characteristics of physical geodesy. Manuscr. Geod. 20, 379–385 (1995)

    Google Scholar 

  222. Rummel, R., van Gelderen, M., Koop, R., Schrama, E., Sansó, F., Brovelli, M., Miggliaccio, F., Sacerdote, F.: Spherical Harmonic Analysis of Satellite Gradiometry. Netherlands Geodetic Commission. New Series, vol. 39 (1993)

    Google Scholar 

  223. Rummel, R., Reigber, C., Ilk, K.: The use of satellite-to-satellite tracking for gravity parameter recovery. ESA Workshop on Space Oceanography, Navigation, and Geodynamics (SONG), ESA-SP-137, pp. 151–161 (1978)

    Google Scholar 

  224. Sansò, F., Tscherning, C.C.: The inverse gravimetric problem in gravity modelling. In: Kejlsø, E., Poder, K., Tscherning, C.C. (eds.) Festschrift to Torben Krarup, pp. 299–334. Geodätisk Institute, Copenhagen (1989)

    Google Scholar 

  225. Schmidt, M., Dettmering, D., Seitz, F.: Using B-splines expansions for ionosphere modeling. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.), Handbook of Geomathematics, vol. 1, 2nd edn., pp. 939–984. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  226. Schneider, F.: Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (1997)

    Google Scholar 

  227. Schreiner, M.: Tensor spherical harmonics and their application in satellite gradiometry. Ph.D.-Thesis, Geomathematics Group, University of Kaiserslautern (1994)

    Google Scholar 

  228. Schreiner, M.: Locally supported kernels for spherical spline interpolation. J. Approx. Theory 89, 172–194 (1997)

    Google Scholar 

  229. Schreiner, M.: Wavelet approximation by spherical up functions. Habilitation Thesis, Geomathematics Group, University of Kaiserslautern. Shaker, Aachen (2004)

    Google Scholar 

  230. Schröder, P., Sweldens, W.: Spherical wavelets. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’95), pp. 161–172. ACM, New York (1995)

    Google Scholar 

  231. Shannon, C.E.: Communication in the presence of noise. Proc. Inst. Radio Eng. 37, 10–21 (1949)

    Google Scholar 

  232. Shannon, C.E.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

    Google Scholar 

  233. Shen, X., Zayed, A.I. (eds.): Multiscale signal analysis and modeling. Springer, New York (2013)

    Google Scholar 

  234. Shure, L., Parker, R.L., Backus, G.E.: Harmonic splines for geomagnetic modelling. Phys. Earth Planet. Int. 28, 215–229 (1982)

    Google Scholar 

  235. Simons, F.J.: Slepian functions and their use in signal estimation and spectral analysis. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn., pp. 891–923. Springer, Heidelberg (2010)

    Google Scholar 

  236. Simons, F.J., Dahlen, F.A., Wieczorek, M.: Spatiospectral concentration on a sphere. SIAM Rev. 48, 504–536 (2006)

    Google Scholar 

  237. Simons, F.J., Dahlen, F.A.: Spherical Slepian functions and the polar gap in geodesy. Geoph. J. Int. 166, 1039–1061 (2006)

    Google Scholar 

  238. Simons, F.J., Plattner, A.: Scalar and vector Slepian functions, spherical signal estimation and spectral analysis. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 2nd edn., pp. 2563–2608. Springer, Berlin/Heidelberg (2015)

    Google Scholar 

  239. Smale, S., Zhou, D.-X.: Shannon sampling and function reconstruction from point values. Bull. Am. Math. Soc. 41, 279–305 (2004)

    Google Scholar 

  240. Steiner, A.K., Hunt, D., Ho, S.-P., Kirchengast, G., Mannucci, A.J., Scherllin-Pirscher, B., Gleisner, H., von Engeln, A., Schmidt, T., Ao, C.O., Leroy, S.S., Herman, B., Kursinski, E.R., Foelsche, U., Gorbunov, M., Heise, S., Kuo, Y.-H., Lauritsen, K.B., Marquardt, C., Rocken, C., Schreiner, W., Sokolovskiy, S., Syndergaard, S., Wickert, J.: Quantification of structural uncertainty in climate data records from GPS radio occultation. Atmos. Chem. Phys. 13, 1469–1484 (2013)

    Google Scholar 

  241. Stenger, F.: Approximations via Whittaker’s cardinal function. J. Approx. Theory 17, 222–240 (1976)

    Google Scholar 

  242. Stenger, F.: Numerical methods based on Whittaker cardinal, or sinc functions. SIAM Rev. 23, 165–224 (1981)

    Google Scholar 

  243. Sun, Q.: Non-uniform sampling and reconstruction for signals with finite rate of innovations. SIAM J. Math. Anal. 38, 1389–1422 (2006)

    Google Scholar 

  244. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28, 301–329 (2008)

    Google Scholar 

  245. Sun, Q.: Local reconstruction for sampling in shift-invariant spaces. Adv. Comput. Math. 32, 335–352 (2010)

    Google Scholar 

  246. Svensson, S.L.: Pseudodifferential operators. A new approach to the boundary value problems of Physical Geodesy. Manuscr. Geod. 8, 1–40 (1983)

    Google Scholar 

  247. Svensson, S.L.: Finite elements on the sphere. J. Approx. Theory 40, 246–260 (1984)

    Google Scholar 

  248. Sweldens, W.: The lifting scheme: a construction of second generation wavelets. SIAM J. Math. Anal. 29, 511–546 (1997)

    Google Scholar 

  249. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  250. Tikhonov, A.N., Goncharsky, A.V., Stepanov, V.V., Yagola, A.G.: Numerical Methods for the Solution of Ill-Posed Problems. Kluwer, Dordrecht (1995)

    Google Scholar 

  251. Unser, M.: Sampling – 50 years after Shannon. Proc. IEEE 88, 569–587 (2000)

    Google Scholar 

  252. Vetterli, M., Marziliano, P. Blu, T.: Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50, 1417–1428 (2002)

    Google Scholar 

  253. Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comput. 2, 5–16 (also: Errata SIAM J. Sci. Stat. Comput. 3, 385–386 1981) (1981)

    Google Scholar 

  254. Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  255. Walter, A.V., Schäfer, R.W.: Digital Signal Processing. Prentice-Hall, New York (1989)

    Google Scholar 

  256. Walter, G.G.: A sampling theorem for wavelet subspace. IEEE Trans. Inform. Theor. 38, 881–884 (1992)

    Google Scholar 

  257. Weber, E.: The geometry of sampling on unions of lattices. Proc. Am. Math. Soc. (2002)

    Google Scholar 

  258. Weinreich, I.: A construction of C(1)–wavelets on the two-dimensional sphere. Appl. Comput. Harmon. Anal. (ACHA) 10, 1–26 (2001)

    Google Scholar 

  259. Whittaker, E.T.: On the functions which are represented by the expansions of the interpolation theory. Proc. R. Soc. Edin. Sec. A 35, 181–194 (1915)

    Google Scholar 

  260. Whittaker, E.T.: On a new method of graduation. Proc. Edin. Math. Soc. 41, 63–75 (1923)

    Google Scholar 

  261. Whittaker, E.T.: The Fourier theory of cardinal functions. Proc. Math. Cox. Edin. 1, 169–176 (1929)

    Google Scholar 

  262. Wiaux, Y., Jacques, L., Vandergheynst, P.: Correspondence principle between spherical and Euclidean wavelets. Astrophys. J. 632, 15–28 (2005)

    Google Scholar 

  263. Wiaux, Y., McEwen, J.D., Vandergheynst, P., Blanc, O.: Exact reconstruction with directional wavelets on the sphere. Mon. Not. R. Astron. Soc. 388, 770–788 (2008)

    Google Scholar 

  264. Wicht, J., Stellmach, S., Harder, H.: Numerical dynamo simulations: from basic concepts to realistic models. In: Freeden, W., Nashed, M.Z., Sonar, T. (eds.) Handbook of Geomathematics, 1st edn., pp. 459–502. Springer, Heidelberg (2010)

    Google Scholar 

  265. Wieczorek, M.A.: The gravity and topography of the terrestrial planets. In: Spohn, T. (ed.) Treatise on Geophysics, vol.10, 2nd edn., pp. 153–2193. Elsevier, Amsterdam (2015)

    Google Scholar 

  266. Wojciech, J., Carr, N.A., Jensen, H.W.: Importance sampling spherical harmonics. Eurographics 28 (2009)

    Google Scholar 

  267. Wolf, K.: Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. Ph.D.-Thesis, Geomathematics Group, University of Kaisers- lautern (2009)

    Google Scholar 

  268. Yao, K.: Applications of reproducing Kernel Hilbert spaces-bandlimited signal models. Inf. Control 11, 429–444 (1967)

    Google Scholar 

  269. Zayed, A.: Advances in Shannon’s Sampling Theory. CRC Press/Chapman and Hall, Boca Raton/New York/London (1993)

    Google Scholar 

  270. Zayed, A., Hinsen, G., Butzer, P.L.: On Lagrange interpolation and Kramer-type sampling theorems associated with Sturm-Liouville problems. SIAM J. Appl. Math. 50, 893–909 (1990)

    Google Scholar 

  271. Zayed, A.I., Schmeisser, G.: New Perspectives on Approximation and Sampling. Applied and Harmonic Analysis. Birkhäuser, Basel (2014)

    Google Scholar 

  272. Zidarov, D.P.: Inverse Gravimetric Problem in Geoprospecting and Geodesy. Developments in Solid Earth Geophysics, vol. 19. Elsevier, Amsterdam (1990)

    Google Scholar 

Download references

Acknowledgements

This contribution represents a synopsis of ideas and concepts presented in the textbook “Spherical Sampling”, Geosystem Mathematics, Birkhäuser, Basel [90]. For more mathematical details and algorithmic aspects the interested reader is referred to the contents of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Willi Freeden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Freeden, W., Schreiner, M. (2020). Spherical Harmonics, Splines, and Wavelets. In: Freeden, W. (eds) Mathematische Geodäsie/Mathematical Geodesy. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55854-6_101

Download citation

Publish with us

Policies and ethics