Contextuality in Multipartite Pseudo-Telepathy Graph Games

  • Anurag Anshu
  • Peter Høyer
  • Mehdi Mhalla
  • Simon Perdrix
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

Analyzing pseudo-telepathy graph games, we propose a way to build contextuality scenarios exhibiting the quantum supremacy using graph states. We consider the combinatorial structures generating equivalent scenarios. We introduce a new tool called multipartiteness width to investigate which scenarios are harder to decompose and show that there exist graphs generating scenarios with a linear multipartiteness width.

References

  1. 1.
    Abramsky, S., Brandenburger, A.: The sheaf theoretic structure of non locality and contextuality. New J. Phys. 13, 113036 (2011)CrossRefGoogle Scholar
  2. 2.
    Abramsky, S., Barbosa, R.S., Mansfield, S.: Quantifying contextuality via linear programming. In: Informal Proceedings of Quantum Physics and Logic (2016)Google Scholar
  3. 3.
    Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and contextuality. Electron. Proc. Theor. Comput. Sci. 95, 1–14 (2012)CrossRefGoogle Scholar
  4. 4.
    Abramsky, S., Barbosa, R.S., Carù, G., Perdrix, S.: A complete characterisation of all-versus-nothing arguments for stabiliser states. arXiv preprint arXiv:1705.08459 (2017)
  5. 5.
    Acín, A., Fritz, T., Leverrier, A., Sainz, B., et al.: A combinatorial approach to nonlocality and contextuality. Comm. Math. Phys. 334(2), 533–628 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Anshu, A., Mhalla, M.: Pseudo-telepathy games and genuine NS k-way nonlocality using graph states. Quantum Inf. Comput. 13(9–10), 0833–0845 (2013). Rinton PressMathSciNetGoogle Scholar
  7. 7.
    Badanidiyuru, A., Langford, J., Slivkins, A.: Resourceful contextual bandits. In: COLT (2014). http://arxiv.org/abs/1402.6779
  8. 8.
    Barrett, J., Pironio, S.: Popescu-Rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95, 140401 (2005)CrossRefGoogle Scholar
  9. 9.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  10. 10.
    Brassard, G., Broadbent, A., Tapp, A.: Multi-party pseudo-telepathy. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 1–11. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45078-8_1 CrossRefGoogle Scholar
  11. 11.
    Bouchet, A.: Connectivity of isotropic systems. In: Proceedings of the Third International Conference on Combinatorial Mathematics, pp. 81–93. New York Academy of Sciences (1989)Google Scholar
  12. 12.
    Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009 (2009)Google Scholar
  13. 13.
    Broadbent, A., Methot, A.A.: On the power of non-local boxes. Theor. Comput. Sci. C 358, 3–14 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Browne, D.E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. (NJP) 9(8), 250 (2007). http://iopscience.iop.org/1367-2630/9/8/250/fulltext/ CrossRefGoogle Scholar
  15. 15.
    Cattanéo, D., Perdrix, S.: Minimum degree up to local complementation: bounds, parameterized complexity, and exact algorithms. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 259–270. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_23 CrossRefGoogle Scholar
  16. 16.
    Coecke, B.: From quantum foundations via natural language meaning to a theory of everything. arXiv:1602.07618v1 (2016)
  17. 17.
    Danos, V., Kashefi, E., Panangaden, P., Perdrix, S.: Extended Measurement Calculus. Cambridge University Press, Cambridge (2010)MATHGoogle Scholar
  18. 18.
    Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(5), 052310 (2006)CrossRefGoogle Scholar
  19. 19.
    Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V. (eds.): Contextuality from Quantum Physics to Psychology. Advanced Series on Mathematical Psychology, vol. 6. World Scientific Press, New Jersey (2015)MATHGoogle Scholar
  20. 20.
    Foulis, D.J., Randall, C.H.: Empirical logic and tensor products. J. Math. Phys. 5, 9–20 (1981). MR683888MathSciNetMATHGoogle Scholar
  21. 21.
    Fritz, T., Sainz, A.B., Augusiak, R., Bohr Brask, J., Chaves, R., Leverrier, A., Acín, A.: Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013)CrossRefGoogle Scholar
  22. 22.
    Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph states. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 15–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36046-6_3 CrossRefGoogle Scholar
  23. 23.
    Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)CrossRefGoogle Scholar
  24. 24.
    Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gnaciński, P., Rosicka, M., Ramanathan, R., Horodecki, K., Horodecki, M., Horodecki, P., Severini, S.: Linear game non-contextuality and Bell inequalities - a graph-theoretic approach. e-print arXiv:1511.05415, November 2015
  26. 26.
    Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7(1), 229 (2005)CrossRefGoogle Scholar
  27. 27.
    Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Hein, M., Dür, W., Eisert, J., Raussendorf, R., Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. arXiv preprint quant-ph/0602096 (2006)Google Scholar
  29. 29.
    Howard, M., Wallman, J.J., Veitch, V., Emerson, J.: Contextuality supplies the “magic” for quantum computation. Nature 510, 351–355 (2014)Google Scholar
  30. 30.
    Høyer, P., Mhalla, M., Perdrix, S.: Resources required for preparing graph states. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 638–649. Springer, Heidelberg (2006). doi:10.1007/11940128_64 CrossRefGoogle Scholar
  31. 31.
    Javelle, J., Mhalla, M., Perdrix, S.: On the minimum degree up to local complementation: bounds and complexity. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 138–147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34611-8_16 CrossRefGoogle Scholar
  32. 32.
    Liang, Y.-C., Rosset, D., Bancal, J.-D., Pütz, G., Barnea, T.J., Gisin, N.: Family of bell-like inequalities as device-independent witnesses for entanglement depth. Phys. Rev. Lett. 114(19), 190401 (2015)MathSciNetCrossRefGoogle Scholar
  33. 33.
    McKague, M.: Interactive proofs for BQP via self-tested graph states. Theory Comput. 12(3), 1–42 (2016)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Marin, A., Markham, D., Perdrix, S.: Access structure in graphs in high dimension and application to secret sharing. In: 8th Conference on the Theory of Quantum Computation, Communication and Cryptography, p. 308 (2013)Google Scholar
  35. 35.
    Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1849 (1990)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Mhalla, M., Murao, M., Perdrix, S., Someya, M., Turner, P.S.: Which graph states are useful for quantum information processing? In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds.) TQC 2011. LNCS, vol. 6745, pp. 174–187. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54429-3_12 CrossRefGoogle Scholar
  38. 38.
    Mhalla, M., Perdrix, S.: Graph states, pivot minor, and universality of (X-Z) measurements. IJUC 9(1–2), 153–171 (2013)Google Scholar
  39. 39.
    Perdrix, S., Sanselme, L.: Determinism and computational power of real measurement-based quantum computation. In: 21st International Symposium on Fundamentals of Computation Theory (FCT 2017) (2017)Google Scholar
  40. 40.
    Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)CrossRefGoogle Scholar
  41. 41.
    Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games. e-print arXiv:1606.03140 (2016)
  42. 42.
    Zeng, W., Zahn, P.: Contextuality and the weak axiom in the theory of choice. In: Atmanspacher, H., Filk, T., Pothos, E. (eds.) QI 2015. LNCS, vol. 9535, pp. 24–35. Springer, Cham (2016). doi:10.1007/978-3-319-28675-4_3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Anurag Anshu
    • 1
  • Peter Høyer
    • 2
  • Mehdi Mhalla
    • 3
  • Simon Perdrix
    • 4
  1. 1.Centre for Quantum TechnologiesNational University of SingaporeSingaporeSingapore
  2. 2.University of CalgaryCalgaryCanada
  3. 3.University of Grenoble Alpes, CNRS, Grenoble INP, LIGGrenobleFrance
  4. 4.CNRS, LORIA, Université de Lorraine, Inria CarteNancyFrance

Personalised recommendations