Skip to main content

Contextuality in Multipartite Pseudo-Telepathy Graph Games

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

Analyzing pseudo-telepathy graph games, we propose a way to build contextuality scenarios exhibiting the quantum supremacy using graph states. We consider the combinatorial structures generating equivalent scenarios. We introduce a new tool called multipartiteness width to investigate which scenarios are harder to decompose and show that there exist graphs generating scenarios with a linear multipartiteness width.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The following three properties are equivalent: (i) \(D\subseteq \text {Even}(D)\); (ii) every vertex of G[D] has an even degree; (iii) G[D] is a union of Eulerian graphs. Notice that \(D\subseteq \text {Even}(D)\) does not imply that G[D] is Eulerian as it may not be connected.

  2. 2.

    \(L_x\) is linear for the symmetric difference: \(L_x(D_1\oplus D_2)=L_x(D_1)\oplus L_x(D_2)\).

  3. 3.

    The Foulis Randall product of scenarios [5] is the scenario \(H_A \otimes H_B\) with vertices \(V(H_A\otimes H_B)=V(H_A)\times V(H_B)\) and edges \(E(H_A\otimes H_B)=E_{A\rightarrow B}\cup E_{A\leftarrow B}\) where \(E_{A\rightarrow B}:=\{\cup _{a\in e_A} \{a\}\times f(a) : e_a\in E_A, f: e_A \rightarrow E_B\}\) and \(E_{A\leftarrow B}:=\{\cup _{b\in e_A} f(b)\times \{b\} : e_b\in E_b, f: E_B \rightarrow E_A\}\). In the multipartite case there are several ways to define products, however they all correspond to the same non-locality constraints [5]. Therefore one can just consider the minimal product \( ^{\min }\otimes _{i=1 }^n H_i\) which has vertices in the cartesian product \(V=\varPi V_i\) and edges \(\cup _{k\in [1,n]} E_k\) where \(E_k=\{(v_1\ldots ,v_n), v_i\in e_i \, \forall i\ne k,\, v_k\in f(\overrightarrow{v})\}\) for some edge \(e_i\in E(H_i)\) for every party \(i\ne k\) and a function \(\overrightarrow{v}\mapsto f(\overrightarrow{v})\) which assigns to every joint outcome \(\overrightarrow{v}=(v_1\ldots v_{k-1},v_{k+1},\ldots v_n)\) an edge \(f(\overrightarrow{v})\in E(H_k)\) (the \(k^{th}\) vertex is replaced by a function of the others).

  4. 4.

    Note that for the questions x for which there exists no D involved in x, all the answers are allowed thus the constraints represented by the associated edge is a hyperedge of no-signaling scenario \(H_{Nsig}\).

  5. 5.

    The probability distribution described in [8] corresponds to the quantum winning strategy on the graph state obtained from a cycle with 5 vertices.

References

  1. Abramsky, S., Brandenburger, A.: The sheaf theoretic structure of non locality and contextuality. New J. Phys. 13, 113036 (2011)

    Article  Google Scholar 

  2. Abramsky, S., Barbosa, R.S., Mansfield, S.: Quantifying contextuality via linear programming. In: Informal Proceedings of Quantum Physics and Logic (2016)

    Google Scholar 

  3. Abramsky, S., Mansfield, S., Barbosa, R.S.: The cohomology of non-locality and contextuality. Electron. Proc. Theor. Comput. Sci. 95, 1–14 (2012)

    Article  Google Scholar 

  4. Abramsky, S., Barbosa, R.S., Carù, G., Perdrix, S.: A complete characterisation of all-versus-nothing arguments for stabiliser states. arXiv preprint arXiv:1705.08459 (2017)

  5. Acín, A., Fritz, T., Leverrier, A., Sainz, B., et al.: A combinatorial approach to nonlocality and contextuality. Comm. Math. Phys. 334(2), 533–628 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anshu, A., Mhalla, M.: Pseudo-telepathy games and genuine NS k-way nonlocality using graph states. Quantum Inf. Comput. 13(9–10), 0833–0845 (2013). Rinton Press

    MathSciNet  Google Scholar 

  7. Badanidiyuru, A., Langford, J., Slivkins, A.: Resourceful contextual bandits. In: COLT (2014). http://arxiv.org/abs/1402.6779

  8. Barrett, J., Pironio, S.: Popescu-Rohrlich correlations as a unit of nonlocality. Phys. Rev. Lett. 95, 140401 (2005)

    Article  Google Scholar 

  9. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  10. Brassard, G., Broadbent, A., Tapp, A.: Multi-party pseudo-telepathy. In: Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 1–11. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45078-8_1

    Chapter  Google Scholar 

  11. Bouchet, A.: Connectivity of isotropic systems. In: Proceedings of the Third International Conference on Combinatorial Mathematics, pp. 81–93. New York Academy of Sciences (1989)

    Google Scholar 

  12. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: 50th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2009 (2009)

    Google Scholar 

  13. Broadbent, A., Methot, A.A.: On the power of non-local boxes. Theor. Comput. Sci. C 358, 3–14 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Browne, D.E., Kashefi, E., Mhalla, M., Perdrix, S.: Generalized flow and determinism in measurement-based quantum computation. New J. Phys. (NJP) 9(8), 250 (2007). http://iopscience.iop.org/1367-2630/9/8/250/fulltext/

    Article  Google Scholar 

  15. Cattanéo, D., Perdrix, S.: Minimum degree up to local complementation: bounds, parameterized complexity, and exact algorithms. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 259–270. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48971-0_23

    Chapter  Google Scholar 

  16. Coecke, B.: From quantum foundations via natural language meaning to a theory of everything. arXiv:1602.07618v1 (2016)

  17. Danos, V., Kashefi, E., Panangaden, P., Perdrix, S.: Extended Measurement Calculus. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  18. Danos, V., Kashefi, E.: Determinism in the one-way model. Phys. Rev. A 74(5), 052310 (2006)

    Article  Google Scholar 

  19. Dzhafarov, E., Jordan, S., Zhang, R., Cervantes, V. (eds.): Contextuality from Quantum Physics to Psychology. Advanced Series on Mathematical Psychology, vol. 6. World Scientific Press, New Jersey (2015)

    MATH  Google Scholar 

  20. Foulis, D.J., Randall, C.H.: Empirical logic and tensor products. J. Math. Phys. 5, 9–20 (1981). MR683888

    MathSciNet  MATH  Google Scholar 

  21. Fritz, T., Sainz, A.B., Augusiak, R., Bohr Brask, J., Chaves, R., Leverrier, A., Acín, A.: Local orthogonality as a multipartite principle for quantum correlations. Nat. Commun. 4, 2263 (2013)

    Article  Google Scholar 

  22. Gravier, S., Javelle, J., Mhalla, M., Perdrix, S.: Quantum secret sharing with graph states. In: Kučera, A., Henzinger, T.A., Nešetřil, J., Vojnar, T., Antoš, D. (eds.) MEMICS 2012. LNCS, vol. 7721, pp. 15–31. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36046-6_3

    Chapter  Google Scholar 

  23. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)

    Article  Google Scholar 

  24. Greenberger, D.M., Horne, M.A., Shimony, A., Zeilinger, A.: Bell’s theorem without inequalities. Am. J. Phys. 58, 1131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gnaciński, P., Rosicka, M., Ramanathan, R., Horodecki, K., Horodecki, M., Horodecki, P., Severini, S.: Linear game non-contextuality and Bell inequalities - a graph-theoretic approach. e-print arXiv:1511.05415, November 2015

  26. Gühne, O., Tóth, G., Briegel, H.J.: Multipartite entanglement in spin chains. New J. Phys. 7(1), 229 (2005)

    Article  Google Scholar 

  27. Hardy, L.: Nonlocality for two particles without inequalities for almost all entangled states. Phys. Rev. Lett. 71, 1665–1668 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. arXiv preprint quant-ph/0602096 (2006)

    Google Scholar 

  29. Howard, M., Wallman, J.J., Veitch, V., Emerson, J.: Contextuality supplies the “magic” for quantum computation. Nature 510, 351–355 (2014)

    Google Scholar 

  30. Høyer, P., Mhalla, M., Perdrix, S.: Resources required for preparing graph states. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 638–649. Springer, Heidelberg (2006). doi:10.1007/11940128_64

    Chapter  Google Scholar 

  31. Javelle, J., Mhalla, M., Perdrix, S.: On the minimum degree up to local complementation: bounds and complexity. In: Golumbic, M.C., Stern, M., Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 138–147. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34611-8_16

    Chapter  Google Scholar 

  32. Liang, Y.-C., Rosset, D., Bancal, J.-D., Pütz, G., Barnea, T.J., Gisin, N.: Family of bell-like inequalities as device-independent witnesses for entanglement depth. Phys. Rev. Lett. 114(19), 190401 (2015)

    Article  MathSciNet  Google Scholar 

  33. McKague, M.: Interactive proofs for BQP via self-tested graph states. Theory Comput. 12(3), 1–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Marin, A., Markham, D., Perdrix, S.: Access structure in graphs in high dimension and application to secret sharing. In: 8th Conference on the Theory of Quantum Computation, Communication and Cryptography, p. 308 (2013)

    Google Scholar 

  35. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78, 042309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838–1849 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  37. Mhalla, M., Murao, M., Perdrix, S., Someya, M., Turner, P.S.: Which graph states are useful for quantum information processing? In: Bacon, D., Martin-Delgado, M., Roetteler, M. (eds.) TQC 2011. LNCS, vol. 6745, pp. 174–187. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54429-3_12

    Chapter  Google Scholar 

  38. Mhalla, M., Perdrix, S.: Graph states, pivot minor, and universality of (X-Z) measurements. IJUC 9(1–2), 153–171 (2013)

    Google Scholar 

  39. Perdrix, S., Sanselme, L.: Determinism and computational power of real measurement-based quantum computation. In: 21st International Symposium on Fundamentals of Computation Theory (FCT 2017) (2017)

    Google Scholar 

  40. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  Google Scholar 

  41. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games. e-print arXiv:1606.03140 (2016)

  42. Zeng, W., Zahn, P.: Contextuality and the weak axiom in the theory of choice. In: Atmanspacher, H., Filk, T., Pothos, E. (eds.) QI 2015. LNCS, vol. 9535, pp. 24–35. Springer, Cham (2016). doi:10.1007/978-3-319-28675-4_3

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank an anonymous reviewer for noticing a mistake in an earlier version and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Perdrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Anshu, A., Høyer, P., Mhalla, M., Perdrix, S. (2017). Contextuality in Multipartite Pseudo-Telepathy Graph Games. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics