Skip to main content

Automatic Kolmogorov Complexity and Normality Revisited

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Abstract

It is well known that normality (all factors of a given length appear in an infinite sequence with the same frequency) can be described as incompressibility via finite automata. Still the statement and the proof of this result as given by Becher and Heiber (2013) in terms of “lossless finite-state compressors” do not follow the standard scheme of Kolmogorov complexity definition (an automaton is used for compression, not decompression). We modify this approach to make it more similar to the traditional Kolmogorov complexity theory (and simpler) by explicitly defining the notion of automatic Kolmogorov complexity and using its simple properties. Other known notions (Shallit and Wang [15], Calude et al. [8]) of description complexity related to finite automata are discussed (see the last section).

As a byproduct, this approach provides simple proofs of classical results about normality (equivalence of definitions with aligned occurrences and all occurrences, Wall’s theorem saying that a normal number remains normal when multiplied by a rational number, and Agafonov’s result saying that normality is preserved by automatic selection rules).

A. Shen—Supported by ANR-15-CE40-0016-01 RaCAF grant.

On leave from IITP RAS, Moscow, Russia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agafonov, V.N.: Normal sequences and finite automata. Doklady AN SSSR 179, 255–256 (1968). See also the paper of V.N. Agafonov with the same name: Problemy Kibernetiki. vol. 20, pp. 123–129. Nauka, Moscow (1968)

    MathSciNet  MATH  Google Scholar 

  2. Becher, V.: Turing’s normal numbers: towards randomness. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 35–45. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30870-3_5

    Chapter  Google Scholar 

  3. Becher, V., Carton, O., Heiber, P.: Finite-state independence, 12 November 2016. https://arxiv.org/pdf/1611.03921.pdf

  4. Becher, V., Heiber, P.: Normal number and finite automata. Theoret. Comput. Sci. 477, 109–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berstel, J.: Transductions and Context-Free Languages. Vieweg+Teubner Verlag, Wiesbaden (1969). For a revised 2006–2009 version see the author’s homepage. ISBN 978-3-519-02340-1. http://www-igm.univ-mlv.fr/~berstel

  6. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Cambridge Tracts in Mathematics, vol. 193. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  7. Champernowne, D.: The construction of decimals normal in the scale of ten. J. London Math. Soc. 8(4), 254–260 (1933). (Received 19 April, read 27 April 1933)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calude, C.S., Salomaa, K., Roblot, T.K.: Finite state complexity. Theoret. Comput. Sci. 412, 5668–5677 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Downey, R.G., Hirschfeldt, D.R.: Algorithimic Randomness and Complexity, xxviii+855 p. Springer, New York (2010). ISBN 978-0-387-68441-3

    Google Scholar 

  10. Hyde, K.K., Kjos-Hanssen, B.: Nondeterministic complexity of overlap-free and almost square-free words. Electron. J. Comb. 22, 3 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn, pp. 1–792. Springer, New York (2008). ISBN 978-0-387-49820-1

    MATH  Google Scholar 

  12. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, Hoboken (1974)

    MATH  Google Scholar 

  13. Nies, A.: Computability and Randomness. Oxford Logic Guides. Oxford University Press, Oxford (2009). ISBN 978-0199652600

    Book  MATH  Google Scholar 

  14. Schnorr, C., Stimm, H.: Endliche Automaten und Zufallsfolgen. Acta Informatica 1(4), 345–359 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shallit, J., Wang, M.-W.: Automatic complexity of strings. J. Automata Lang. Comb. 6(4), 537–554 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Shen, A.: Around Kolmogorov complexity: basic notions and results. In: Vovk, V., Papadopoulos, H., Gammerman, A. (eds.) Measures of Complexity, pp. 75–115. Springer, Cham (2015). doi:10.1007/978-3-319-21852-6_7. see also http://arxiv.org/abs/1504.04955

    Chapter  Google Scholar 

  17. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algorithmic Randomness. MCCME, Moscow (2013). (in Russian), English version accepted for publication by AMS. www.lirmm.fr/ashen/kolmbook-eng.pdf

  18. Piatetski-Shapiro, I.I.: On the laws of distribution of the fractional parts of an exponential function. Izvestia Akademii Nauk SSSR Seriya Matematicheskaya 15(1), 47–52 (1951). (in Russian)

    MathSciNet  MATH  Google Scholar 

  19. Uspensky, V.A., Shen, A.: Relations between varieties of Kolmogorov complexities. Math. Syst. Theory 29, 271–292 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wall, D.D.: Normal numbers. Thesis, University of California (1949)

    Google Scholar 

  21. Weber, A.: On the valuedness of finite transducers. Acta Informatica 27(8), 749–780 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Veronica Becher, Olivier Carton and Paul Heiber for many discussions of their paper [3] and the relations between incompressibility and normality, and for the permission to use observations made during these discussions in the current paper. I am also grateful to my colleagues in LIRMM (ESCAPE team) and Moscow (Kolmogorov seminar, Computer Science Department of the HSE). I am thankful to the anonymous referees of an earlier version of this paper submitted to ICALP (and rejected) and to the anonymous referees of the final version.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Shen, A. (2017). Automatic Kolmogorov Complexity and Normality Revisited. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics