A Tour of Recent Results on Word Transducers

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

Regular word transductions extend the robust notion of regular languages from acceptors to transformers. They were already considered in early papers of formal language theory, but turned out to be much more challenging. The last decade brought considerable research around various transducer models, aiming to achieve similar robustness as for automata and languages.

In this talk we survey some recent results on regular word transducers. We discuss how classical connections between automata, logic and algebra extend to transducers, as well as some genuine definability questions. For a recent, more detailed overview of the theory of regular word transductions the reader is referred to the excellent survey [22].

Notes

Acknowledgments

I thank Félix Baschenis, Emmanuel Filiot, Olivier Gauwin, Nathan Lhote, Gabriele Puppis and Sylvain Salvati for numerous discussions and feedback, as well as Mikolaj Bojanczyk for the origins of this work.

References

  1. 1.
    Aho, A., Hopcroft, J., Ullman, J.: A general theory of translation. Math. Syst. Theory 3(3), 193–221 (1969)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alur, R., Cerný, P.: Expressiveness of streaming string transducer. In: Proceedings of FSTTCS 2010. LIPIcs, vol. 8, pp. 1–12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010)Google Scholar
  3. 3.
    Alur, R., Deshmukh, J.V.: Nondeterministic streaming string transducers. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6756, pp. 1–20. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22012-8_1 CrossRefGoogle Scholar
  4. 4.
    Alur, R., Raghothaman, M.: Decision problems for additive regular functions. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 37–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_7 CrossRefGoogle Scholar
  5. 5.
    Baschenis, F., Gauwin, O., Muscholl, A., Puppis, G.: One-way definability of sweeping transducers. In: IARCS Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2015). LIPIcs, vol. 45, pp. 178–191. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)Google Scholar
  6. 6.
    Baschenis, F., Gauwin, O., Muscholl, A., Puppis, G.: Minimizing resources of sweeping, streaming string transducers. In: International Colloquium on Automata, Languages, Programming (ICALP 2016). LIPIcs, vol. 55, pp. 114:1–114:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)Google Scholar
  7. 7.
    Baschenis, F., Gauwin, O., Muscholl, A., Puppis, G.: Untwisting two-way transducers in elementary time. In: ACM/IEEE Symposium on Logic in Computer Science (LICS 2017). IEEE Computer Society (2017)Google Scholar
  8. 8.
    Berstel, J.: Transductions and context-free languages. Teubner Studienbücher Stuttgart (1979)Google Scholar
  9. 9.
    Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 26–37. Springer, Heidelberg (2014). doi:10.1007/978-3-662-43951-7_3 Google Scholar
  10. 10.
    Carton, O., Dartois, L.: Aperiodic two-way transducers and FO-transductions. In: Proceedings of CSL 2015. LIPIcs, pp. 160–174. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)Google Scholar
  11. 11.
    Choffrut, C.: Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theor. Comput. Sci. 5, 325–338 (1977)CrossRefMATHGoogle Scholar
  12. 12.
    Choffrut, C.: Minimizing subsequential transducers: a survey. Theor. Comput. Sci. 292, 131–143 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Culik, K., Karhumäki, J.: The equivalence of finite valued transducers (on HDT0L languages) is decidable. Theor. Comput. Sci. 47, 71–84 (1986)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Culik II, K., Karhumäki, J.: The equivalence problem for single-valued two-way transducers (on NPDT0L languages) is decidable. SIAM J. Comput. 16(2), 221–230 (1987)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Daviaud, L., Reynier, P.-A., Talbot, J.-M.: A generalised twinning property for minimisation of cost register automata. In: Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), pp. 857–866. ACM (2016)Google Scholar
  16. 16.
    Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)MATHGoogle Scholar
  17. 17.
    Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Filiot, E., Gauwin, O., Lhote, N.: Aperiodicity of rational functions is PSPACE-complete. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2016). LIPIcs, vol. 65, pp. 13:1–13:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)Google Scholar
  19. 19.
    Filiot, E., Gauwin, O., Lhote, N.: First-order definability of rational transductions: an algebraic approach. In: Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2016), pp. 387–396. ACM (2016)Google Scholar
  20. 20.
    Filiot, E., Gauwin, O., Reynier, P.-A., Servais, F.: From two-way to one-way finite state transducers. In: ACM/IEEE Symposium on Logic in Computer Science (LICS 2013), pp. 468–477 (2013)Google Scholar
  21. 21.
    Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2014). LIPIcs, pp. 147–159. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2014)Google Scholar
  22. 22.
    Filiot, E., Reynier, P.-A.: Transducers, logic and algebra for functions of finite words. ACM SIGLOG News 3(3), 4–19 (2016)Google Scholar
  23. 23.
    Gallot, P., Muscholl, A., Puppis, G., Salvati, S.: On the decomposition of finite-valued streaming string transducers. In: STACS 2017. LIPIcs, vol. 66, pp. 34:1–34:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)Google Scholar
  24. 24.
    Ginsburg, S., Rose, G.: A characterization of machine mappings. Canad. J. Math. 18, 381–388 (1966)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Griffiths, T.V.: The unsolvability of the equivalence problem for lambda-free nondeterministic generalized machines. J. ACM 15(3), 409–413 (1968)CrossRefMATHGoogle Scholar
  26. 26.
    Gurari, E.: The equivalence problem for deterministic two-way sequential transducers is decidable. SIAM J. Comput. 11(3), 448–452 (1982)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Gurari, E., Ibarra, O.H.: A note on finite-valued and finitely ambiguous transducers. Math. Syst. Theory 16(1), 61–66 (1983)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge (1971)MATHGoogle Scholar
  29. 29.
    Rabin, M.O., Scott, D.: Finite automata and their decision problems. IBM J. Res. Dev. 3(2), 114–125 (1959)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Reutenauer, C., Schützenberger, M.-P.: Minimization of rational word functions. SIAM J. Comput. 20(4), 669–685 (1991)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sakarovitch, J., de Souza, R.: On the decomposition of k-valued rational relations. In: Annual Symposium on Theoretical Aspects of Computer Science (STACS 2008). LIPIcs, vol. 1, pp. 621–632. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2008)Google Scholar
  32. 32.
    Schützenberger, M.-P.: A remark on finite transducers. Inf. Control 4(2–3), 185–196 (1961)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Schützenberger, M.P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Shepherdson, J.: The reduction of two-way automata to one-way automata. IBM J. Res. Dev. 3(2), 198–200 (1959)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Weber, A.: Decomposing a k-valued transducer into k unambiguous ones. RAIRO-ITA 30(5), 379–413 (1996)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.LaBRIUniversity of BordeauxBordeauxFrance

Personalised recommendations