FO Model Checking on Map Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

For first-order logic model checking on monotone graph classes the borderline between tractable and intractable is well charted: it is tractable on all nowhere dense classes of graphs, and this is essentially the limit. In contrast to this, there are few results concerning the tractability of model checking on general, i.e. not necessarily monotone, graph classes.

We show that model checking for first-order logic on map graphs is fixed-parameter tractable, when parameterised by the size of the input formula. Map graphs are a geometrically defined class of graphs similar to planar graphs, but here each vertex of a graph is drawn homeomorphic to a closed disk in the plane in such a way that two vertices are adjacent if, and only if, the corresponding disks intersect. Map graphs may contain arbitrarily large cliques, and are not closed under edge removal.

Our algorithm works by efficiently transforming a given map graph into a nowhere dense graph in which the original graph is first-order interpretable. As a by-product of this technique we also obtain a model checking algorithm for FO on squares of trees.

References

  1. 1.
    Chen, Z.Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. 2, pp. 194–242. Elsevier, Amsterdam (1990)Google Scholar
  3. 3.
    Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: Logic in Computer Science (LICS), pp. 270–279 (2007)Google Scholar
  5. 5.
    Diestel, R.: Graph Theory. GTM, vol. 173, 4th edn. Springer, Heidelberg (2012)MATHGoogle Scholar
  6. 6.
    Dvořák, Z., Král, D., Thomas, R.: Testing first-order properties for subclasses of sparse graphs. J. ACM (JACM) 60(5), 36 (2013)MathSciNetMATHGoogle Scholar
  7. 7.
    Ebbinghaus, H.D., Flum, J.: Finite Model Theory. Perspectives in Mathematical Logic, 2nd edn. Springer, Heidelberg (1999)MATHGoogle Scholar
  8. 8.
    Ebbinghaus, H.D., Flum, J., Thomas, W.: Mathematical Logic, 2nd edn. Springer, Heidelberg (1994)CrossRefMATHGoogle Scholar
  9. 9.
    Frick, M., Grohe, M.: Deciding first-order properties of locally tree-decomposable structures. J. ACM 48, 1148–1206 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gajarský, J., Hliněný, P., Lokshtanov, D., Obdržálek, J., Ordyniak, S., Ramanujan, M., Saurabh, S.: FO model checking on posets of bounded width. In: 2015 IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS), pp. 963–974. IEEE (2015)Google Scholar
  11. 11.
    Gajarský, J., Hliněný, P., Obdržálek, J., Lokshtanov, D., Ramanujan, M.S.: A new perspective on FO model checking of dense graph classes. In: Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, pp. 176–184. ACM (2016)Google Scholar
  12. 12.
    Ganian, R., Hliněný, P., Král’, D., Obdržálek, J., Schwartz, J., Teska, J.: FO model checking of interval graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7966, pp. 250–262. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39212-2_24 CrossRefGoogle Scholar
  13. 13.
    Geller, D.P.: The square root of a digraph. J. Combin. Theory 5, 320–321 (1968)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Grohe, M., Kreutzer, S., Siebertz, S.: Deciding first-order properties of nowhere dense graphs. In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing, STOC 2014, pp. 89–98. ACM (2014)Google Scholar
  15. 15.
    Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica 64(1), 19–37 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Libkin, L.: Elements of Finite Model Theory. Texts in Theoretical Computer Science. Spinger, Heidelberg (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Lin, Y.-L., Skiena, S.S.: Algorithms for square roots of graphs. In: Hsu, W.-L., Lee, R.C.T. (eds.) ISA 1991. LNCS, vol. 557, pp. 12–21. Springer, Heidelberg (1991). doi:10.1007/3-540-54945-5_44 Google Scholar
  18. 18.
    Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Annals Pure Appl. Log. 126(1–3), 159–213 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mnich, M., Rutter, I., Schmidt, J.M.: Linear-time recognition of map graphs with outerplanar witness. In: LIPIcs-Leibniz International Proceedings in Informatics, vol. 53. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)Google Scholar
  20. 20.
    Mukhopadhyay, A.: The square root of a graph. J. Comb. Theory 2, 290–295 (1967)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Nešetřil, J., de Mendez, P.O.: Sparsity – Graphs, Structures, and Algorithms. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27875-4 MATHGoogle Scholar
  22. 22.
    Thorup, M.: Map graphs in polynomial time. In: Proceedings of 39th Annual Symposium on Foundations of Computer Science, pp. 396–405. IEEE (1998)Google Scholar
  23. 23.
    Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Tutte, W.T.: Graph Theory. Encyclopedia of Mathematics and its Applications, vol. 21. Cambridge University Press, Cambridge (2001)MATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsTechnical University DarmstadtDarmstadtGermany
  2. 2.Tokyo and JST, ERATO, Kawarabayashi Large Graph ProjectNational Institute of InformaticsChiyoda-kuJapan

Personalised recommendations