Strong Duality in Horn Minimization

  • Endre Boros
  • Ondřej ČepekEmail author
  • Kazuhisa Makino
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)


A pure Horn CNF is minimal if no shorter pure Horn CNF representing the same function exists, where the CNF length may mean several different things, e.g. the number of clauses, or the total number of literals (sum of clause lengths), or the number of distinct bodies (source sets). The corresponding minimization problems (a different problem for each measure of the CNF size) appear not only in the Boolean context, but also as problems on directed hypergraphs or problems on closure systems. While minimizing the number of clauses or the total number of literals is computationally very hard, minimizing the number of distinct bodies is polynomial time solvable. There are several algorithms in the literature solving this task.

In this paper we provide a structural result for this body minimization problem. We develop a lower bound for the number of bodies in any CNF representing the same Boolean function as the input CNF, and then prove a strong duality result showing that such a lower bound is always tight. This in turn gives a simple sufficient condition for body minimality of a pure Horn CNF, yielding a conceptually simpler minimization algorithm compared to the existing ones, which matches the time complexity of the fastest currently known algorithm.



The second author gratefully acknowledges a support by the Czech Science Foundation (grant P202/15-15511S). The third author gratefully acknowledges partial support by Grant-in-Aid for Scientific Research 24106002, 25280004, 26280001 and JST CREST Grant Number JPMJCR1402, Japan.


  1. 1.
    Arias, M., Balcázar, J.L.: Canonical Horn representations and query learning. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol. 5809. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04414-4_16 CrossRefGoogle Scholar
  2. 2.
    Arias, M., Balcázar, J.L.: Construction and learnability of canonical Horn formulas. Mach. Learn. 85(3), 273–297 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ausiello, G., D’Atri, A., Sacca, D.: Minimal representation of directed hypergraphs. SIAM J. Comput. 15(2), 418–431 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Boros, E., Čepek, O., Kogan, A.: Horn minimization by iterative decomposition. Ann. Math. Artif. Intell. 23(3–4), 321–343 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boros, E., Čepek, O., Kogan, A., Kučera, P.: A subclass of Horn CNFs optimally compressible in polynomial time. Ann. Math. Artif. Intell. 57(3–4), 249–291 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Boros, E., Čepek, O., Kogan, A., Kučera, P.: Exclusive and essential sets of implicates of Boolean functions. Discret. Appl. Math. 158(2), 81–96 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boros, E., Čepek, O., Kučera, P.: A decomposition method for CNF minimality proofs. Theoret. Comput. Sci. 510, 111–126 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Buchfuhrer, D., Umans, C.: The complexity of Boolean formula minimization. J. Comput. Syst. Sci. 77(1), 142–153 (2011). Celebrating Karp’s Kyoto PrizeMathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cook, S.A.: The complexity of theorem-proving procedures. In: Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC 1971, pp. 151–158. ACM, New York (1971)Google Scholar
  10. 10.
    Čepek, O., Kučera, P., Savicky, P.: Boolean functions with a simple certificate for CNF complexity. Discret. Appl. Math. 160(4–5), 365–382 (2012)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Guigues, J.L., Duquenne, V.: Familles minimales d’implications informatives résultant d’une tables de données binares. Math. Sci. Hum. 95, 5–18 (1986)Google Scholar
  12. 12.
    Hammer, P.L., Kogan, A.: Optimal compression of propositional Horn knowledge bases: complexity and approximation. Artif. Intell. 64(1), 131–145 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hammer, P.L., Kogan, A.: Quasi-acyclic propositional Horn knowledge bases: optimal compression. IEEE Trans. Knowl. Data Eng. 7(5), 751–762 (1995)CrossRefGoogle Scholar
  14. 14.
    Hellerstein, L., Kletenik, D.: On the gap between ess\((f)\) and cnf-size\((f)\). Discret. Appl. Math. 161(1), 19–27 (2013)CrossRefzbMATHGoogle Scholar
  15. 15.
    Maier, D.: Minimum covers in relational database model. J. ACM 27(4), 664–674 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Umans, C.: The minimum equivalent DNF problem and shortest implicants. J. Comput. Syst. Sci. 63(4), 597–611 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Umans, C., Villa, T., Sangiovanni-Vincentelli, A.L.: Complexity of two-level logic minimization. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 25(7), 1230–1246 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.MSIS Department and RUTCORRutgers UniversityPiscatawayUSA
  2. 2.Department of Theoretical Computer ScienceCharles UniversityPrague 1Czech Republic
  3. 3.Research Institute for Mathematical Sciences (RIMS)Kyoto UniversityKyotoJapan

Personalised recommendations