Automata and Program Analysis

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10472)

Abstract

We show how recent results concerning quantitative forms of automata help providing refined understanding of the properties of a system (for instance, a program). In particular, combining the size-change abstraction together with results concerning the asymptotic behavior of tropical automata yields extremely fine complexity analysis of some pieces of code.

This abstract gives an informal, yet precise, explanation of why termination and complexity analysis are related to automata theory.

References

  1. 1.
    Anderson, H., Khoo, S.-C.: Affine-based size-change termination. In: Ohori, A. (ed.) APLAS 2003. LNCS, vol. 2895, pp. 122–140. Springer, Heidelberg (2003). doi:10.1007/978-3-540-40018-9_9 CrossRefGoogle Scholar
  2. 2.
    Ben-Amram, A.M.: Size-change termination with difference constraints. ACM Trans. Program. Lang. Syst. 30(3), 16 (2008)CrossRefGoogle Scholar
  3. 3.
    Ben-Amram, A.M.: Monotonicity constraints for termination in the integer domain. Logical Methods Comput. Sci. 7(3), 1–43 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bozzelli, L., Pinchinat, S.: Verification of gap-order constraint abstractions of counter systems. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148, pp. 88–103. Springer, Heidelberg (2012). doi:10.1007/978-3-642-27940-9_7 CrossRefGoogle Scholar
  5. 5.
    Codish, M., Fuhs, C., Giesl, J., Schneider-Kamp, P.: Lazy abstraction for size-change termination. In: Fermüller, C.G., Voronkov, A. (eds.) LPAR 2010. LNCS, vol. 6397, pp. 217–232. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16242-8_16 CrossRefGoogle Scholar
  6. 6.
    Codish, M., Gonopolskiy, I., Ben-Amram, A.M., Fuhs, C., Giesl, J.: Sat-based termination analysis using monotonicity constraints over the integers. TPLP 11(4–5), 503–520 (2011)MathSciNetMATHGoogle Scholar
  7. 7.
    Colcombet, T., Daviaud, L., Zuleger, F.: Size-change abstraction and max-plus automata. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8634, pp. 208–219. Springer, Heidelberg (2014). doi:10.1007/978-3-662-44522-8_18 Google Scholar
  8. 8.
    Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 460–475. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73595-3_34 CrossRefGoogle Scholar
  9. 9.
    Lee, C.S.: Ranking functions for size-change termination. ACM Trans. Program. Lang. Syst. 31(3), 10:1–10:42 (2009)CrossRefGoogle Scholar
  10. 10.
    Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program termination. In: POPL, pp. 81–92 (2001)Google Scholar
  11. 11.
    Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer, Heidelberg (2006). doi:10.1007/11817963_36 CrossRefGoogle Scholar
  12. 12.
    Vidal, G.: Quasi-terminating logic programs for ensuring the termination of partial evaluation. In: PEPM, pp. 51–60 (2007)Google Scholar
  13. 13.
    Zuleger, F.: Asymptotically precise ranking functions for deterministic size-change systems. In: Beklemishev, L.D., Musatov, D.V. (eds.) CSR 2015. LNCS, vol. 9139, pp. 426–442. Springer, Cham (2015). doi:10.1007/978-3-319-20297-6_27 Google Scholar
  14. 14.
    Zuleger, F., Gulwani, S., Sinn, M., Veith, H.: Bound analysis of imperative programs with the size-change abstraction. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 280–297. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7_22 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Thomas Colcombet
    • 1
  • Laure Daviaud
    • 2
  • Florian Zuleger
    • 3
  1. 1.IRIF, Case 7014 Université Paris DiderotParis Cedex 13France
  2. 2.MIMUWWarszawaPoland
  3. 3.Institut für Informationssysteme 184/4Technische Universität WienWienAustria

Personalised recommendations