Versuchspläne für komplexe Zusammenhänge

  • Karl Siebertz
  • David van Bebber
  • Thomas Hochkirchen
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Typische Anwendungsfälle der Versuchsplanung, Analyse und Optimierung zeigen eine kontinuierliche Steigerung der Komplexität. Dieses bezieht sich einerseits auf die Anzahl berücksichtigter Faktoren, aber auch auf die abzubildenden Systemzusammenhänge. Klassische Versuchspläne wie Teilfaktor- oder D-optimale Pläne können dabei die erforderlichen Daten nur bedingt liefern und werden durch raumfüllende sowie gleichverteilte Pläne ersetzt. In diesem Kapitel werden Grundlagen sowie unterschiedliche Algorithmen zur Erzeugung, Optimierung und Beurteilung der benötigten Testfelder dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1. Acklam, P.J.: Inverse normal cumulative distribution (2009) 220Google Scholar
  2. 2. Antonov, I., Saleev, V.: An Economic Method of Computing LP Tau-Sequences. USSR Computational Mathematics and Mathematical Physics 19, pp. 252–256 (1980) 203Google Scholar
  3. 3. Barton, R.: Metamodeling: A State of the Art Review. In: Proceedings of the 1994 Winter Simulation Conference (1994) 204Google Scholar
  4. 4. Beasley, J., Springer, S.: Algorithm AS 111: The percentage points of the Normal Distribution. Applied Statistics 26, pp. 118–121 (1977) 220Google Scholar
  5. 5. Bronstein, I.N., Semendjajew, K.A., Musiol, G.: Taschenbuch der Mathematik. Harri Deutsch (2008) 213Google Scholar
  6. 6. Bundschuh, P., Zhu, Y.: A method for exact calculation of the discrepancy of low-dimensional finite point sets (I). Abhandlungen aus Math. Seminar (Univ. Hamburg) 63, pp. 115–133 (1993) 195Google Scholar
  7. 7. Burkardt, J.: Homepage (2009). URL http://people.scs.fsu.edu/~burkardt/.(abgerufen 11/2016) 203
  8. 8. Caldwell, C.: The Prime Pages (2009). URL http://primes.utm.edu.(abgerufen 11/2016) 200
  9. 9. Dueck, G., Scheuer, T.: Threshold accepting: A general purpose algorithm appearing superior to simulated annealing. J. of Comp. Physics 90, pp. 161–175 (1990) 215Google Scholar
  10. 10. Fahrmeir, L., Kneib, T., Lang, S.: Regression. Springer Verlag, Berlin Heidelberg (2009) 55, 56, 61, 65, 213Google Scholar
  11. 11. Fang, K.: The uniform design: application of number-theoretic methods in experimental design. Acta Math. Appl. Sinica 3, pp. 363–372 (1980) 194Google Scholar
  12. 12. Fang, K.: Theory, method and applications of the uniform design. Inter. J. Reliability, Quality and Safety Engineering 9, pp. 305–315 (2002) 194Google Scholar
  13. 13. Fang, K., Hickernell, F.: The uniform design and its application. Bulletin of The International Statistical Institute pp. 339–349 (1995) 194Google Scholar
  14. 14. Fang, K., Li, J.: Some new results on uniform design. Chinese Science Bulletin 40, pp. 268– 272 (1994) 210Google Scholar
  15. 15. Fang, K., Lin, D.: Uniform designs and their application in industry. In: Handbook on Statistics in Industry, pp. 131–170. Elsevier, North-Holland, Amsterdam (2003) 194Google Scholar
  16. 16. Fang, K., Lin, D., Winker, P., Zhang, Y.: Uniform design: Theory and applications. Technometrics 42, pp. 237–248 (2000) 194Google Scholar
  17. 17. Fang, K.T., Li, R.: Bayesian statistical inference on elliptical matrix distributions. J. Multivar. Anal. 70(1), pp. 66–85 (1999) 212Google Scholar
  18. 18. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments (Computer Science & Data Analysis). Chapman & Hall/CRC (2005) 192, 193, 194, 195, 197, 209, 210, 212, 213, 214, 219, 238, 254, 255, 417, 418, 419Google Scholar
  19. 19. Fang, K.T., Lu, X.,Winker, P.: Lower bounds for centered and wrap-around L2-discrepancies and construction of uniform designs by threshold accepting. J. Complex. 19(5), pp. 692–711 (2003) 213Google Scholar
  20. 20. Fang, K.T., Ma, C.X., Maringer, D., Tang, Y., Winker, P.: Uniform Designs (2005). URL http://www.math.hkbu.edu.hk/UniformDesign/main.html. (abgerufen 11/2016) 210
  21. 21. Fang, K.T., Ma, C.X., Winker, P.: Centered L2-discrepancy of random sampling and Latin hypercube design and construction of uniform designs. Mathematics of Computation 71(237), pp. 275–296 (2000). URL http://www.ams.org/mcom/2002-71-237/S0025-5718-00-01281-3/S0025-5718-00-01281-3.pdf. (abgerufen 11/2016) 209
  22. 22. Fang, K.T., Tang, Y., Yin, J.: Lower bounds for wrap-around L2-discrepancy and constructions of symmetrical uniform designs. J. Complex. 21(5), pp. 757–771 (2005) 197Google Scholar
  23. 23. Galanti, S., Jung, A.R.: Low-Discrepancy Sequences: Monte Carlo Simulation of Option Prices. Journal of Derivatives pp. 63–68 (1997) 202, 203Google Scholar
  24. 24. Hedayat, A., Sloane, N., Stufken, J.: Orthogonal arrays: Theory and Applications. Springer- Verlag, New York (1999) 204Google Scholar
  25. 25. Hickernell, F.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, pp. 299–322 (1998) 196, 197Google Scholar
  26. 26. Hickernell, F.: Random and Quasi Random Point Sets, chap. Lattice rules: How well do they measure up?, pp. 106–166. Springer Verlag, Berlin, New York (1998) 196, 197Google Scholar
  27. 27. Hickernell, F.: Monte Carlo and Quasi-Monte Carlo Methods 1998, chap. What affects the accuracy of quasi-Monte Carlo quadrature?, pp. 16–55. Springer Verlag, Berlin (2000) 197Google Scholar
  28. 28. Huth, F.: Simulation eines Hochdruck-Benzineinspritzsystems. Master’s thesis, RWTH Aachen (2011) 191, 193, 287Google Scholar
  29. 29. Iman, R.L., Conover, W.J.: A distribution-free approach to inducing rank correlation among input variables. Communications in Statistics - Simulation and Computation 11, pp. 311 – 334 (1982) 207Google Scholar
  30. 30. Jin, R., Chen, W., Sudjianto, A.: An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference 134(1), pp. 268–287 (2005) 216, 217, 218Google Scholar
  31. 31. Johnson, M.E., Moore, L.M., Ylvisaker, D.: Minimax and maximin distance designs. Journal of Statistical Planning and Inference 26(26), pp. 131–148 (1990) 191Google Scholar
  32. 32. Joseph, V.R., Ying, H.: Orthogonal-Maximin Latin Hypercube Designs. Statistica Sinica 18, pp. 171–186 (2008) 192, 193Google Scholar
  33. 33. Joy, C., Boyle, P., Tan, K.: Quasi-Monte Carlo Methods in Numerical Finance. Management Science 42, pp. 926–938 (1996) 219, 220Google Scholar
  34. 34. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220, pp. 671–680 (1983) 216Google Scholar
  35. 35. Knuth, D.: The Art of Computer Programming: seminumerical algorithms, vol. 2. Addison- Wesley (2002) 199Google Scholar
  36. 36. Ko, C.W., Lee, J., Queyranne, M.: An Exact Algorithm for Maximum Entropy Sampling. Operations Research 43(4), pp. 684–691 (1995) 193Google Scholar
  37. 37. Korobov, M.: The approximate computation of multiple integrals. Dokl. Akad. Nauk SSSR 124, pp. 1207–1210 (1959) 209Google Scholar
  38. 38. Kuhfeld, W.F.: Orthogonal Arrays. Advanced Analytics Division, SAS (2016). URL http://support.sas.com/techsup/technote/ts723.html. (abgerufen 11/2016) 204
  39. 39. Law, A.M., Kelton,W.D.: Simulation modeling and analysis. McGraw-Hill Science/Engineering/Math (2000) 219Google Scholar
  40. 40. Leary, S., Bhaskar, A., Keane, A.: Optimal orthogonal-array-based latin hypercubes. Journal of Applied Statistics 30, pp. 585–598 (2003) 206Google Scholar
  41. 41. Li,W.W.,Wu, C.F.J.: Columnwise-Pairwise Algorithms With Applications to the Construction of Supersaturated Designs. Technometrics (39), pp. 171–179 (1997) 209, 214Google Scholar
  42. 42. Liang, Y., Fang, K., Xu, Q.: Design and its applications in chemistry and chemical engineering. Chemom. Intell. Lab. Systems 58, pp. 43–57 (2001) 194Google Scholar
  43. 43. Ma, C., Fang, K.T.: A new approach to construction of nearly uniform designs. International Journal of Materials and Product Technology 20, pp. 115– 126 (2004). URL http://www.math.hkbu.edu.hk/UniformDesign/ud2003.file/Theory/UD-03-Ma-30.pdf. (abgerufen 11/2016) 209, 210, 212
  44. 44. Matsumoto, M.: SIMD-oriented Fast Mersenne Twister (SFMT): twice faster than Mersenne Twister (2009). URL http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/index.html. (abgerufen 11/2016) 199
  45. 45. Matsumoto, M., Nishimura, T.: Mersenne twister: A 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. on Modelling and Computer Simulation 8, pp. 117–121 (1998) 199Google Scholar
  46. 46. Matsumoto, M., Saito, M.: SIMD-oriented Fast Mersenne Twister: A 128-bit Pseudorandom Number Generator. In: Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 607–622. Springer Verlag (2008) 199Google Scholar
  47. 47. McKay, M., Beckman, R., Conover,W.: A comparison of three methods for selecting values of input variables in the analysis of output of a computer code. Technometrics 21, pp. 239–245 (1979) 205, 206Google Scholar
  48. 48. Moro, B.: The Full Monte. Risk 8 (1995) 219Google Scholar
  49. 49. Morris, M., Mitchell, T.: Exploratory design for computational experiments. Journal of Statistical Planning and Inference 34(26), pp. 381–402 (1995) 192, 207Google Scholar
  50. 50. Niederreiter, H. (ed.): Random number generation and quasi-Monte Carlo methods, CBMSNSF regional conference series in applied mathematics, vol. 63. Society for Industrial and Applied Mathematics (1992) 196, 204Google Scholar
  51. 51. Owen, A.B.: A central limit theorem for Latin Hypercube sampling. Journal of the Royal Statistical Society 54, pp. 541–551 (1992) 206Google Scholar
  52. 52. Owen, A.B.: Orthogonal Arrays for Computer Experiments, Integration and Visualisation. Statistica Sinica (2), pp. 439–452 (1992) 204, 206Google Scholar
  53. 53. Owen, A.B.: Controlling Correlations in Latin Hypercube Samples. Journal of the American Statistical Association 89, pp. 1517–1522 (1994) 207Google Scholar
  54. 54. Owen, A.B.: Lattice Sampling Revisited: Monte Carlo Variance of Means Over Randomized Orthogonal Arrays. Annals of Statistc 22, pp. 930–945 (1994). URL http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.aos/1176325504. (abgerufen 11/2016) 206
  55. 55. Panneton, F., L’Ecuyer, P., Matsumoto, M.: Improved long-period generators based on linear recurrences modulo 2. ACM Trans. on Mathematical Software 32, pp. 1–16 (2006) 199Google Scholar
  56. 56. Park, J.: Optimal Latin-Hypercube Designs for Computer Experiments. Journal of Statistical Planning and Inference (39), pp. 95–111 (1994) 207Google Scholar
  57. 57. Park, S., Miller, K.: Random number generators: good ones are hard to find. Association for Computing Machinery 31, pp. 1192–2001 (1988) 199Google Scholar
  58. 58. Paskov, S., Traub, J.: Faster valuation of financial derivatives. Journal of Portfolio Management 22, pp. 113–120 (1995) 203Google Scholar
  59. 59. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press (2007) 199, 203, 220, 254, 265, 276, 277, 281, 285, 307, 334, 381, 398, 400Google Scholar
  60. 60. Saab, Y., Rao, V.: Combinatorial optimization by stochastic evolution. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 10, pp. 525–535 (1991) 216Google Scholar
  61. 61. Sacks, J., Welch, W.J., Mitchell, T.J., Wynn, H.P.: Design and Analysis of Computer Experiments. Statistical Sience 4, pp. 409–423 (1989) 179, 193, 205Google Scholar
  62. 62. Schmid,W.C., Schürer, R.: MinT, the online database for optimal parameters of (t, m, s)-nets, (t, s)-sequences, orthogonal arrays, linear codes, and OOAs! (2009). URL http://mint.sbg.ac.at/index.php?i=o. (abgerufen 11/2016) 204
  63. 63. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal 27, pp. 379,423, 623,656 (1948) 193Google Scholar
  64. 64. Shaw, W.: Refinement of the Normal Quantile: A benchmark Normal quantile based on recursion, and an appraisal of the Beasley-Springer-Moro, Acklam, and Wichura (AS241) methods. Tech. rep., Financial Mathematics Group, King’s College London (2007) 220Google Scholar
  65. 65. Shewry, M., Wynn, H.: Maximum entropy design. Journal of Applied Statistics (14), pp. 165– 170 (1987) 193Google Scholar
  66. 66. da Silva, M.E., Barbe, T.: Quasi Monte Carlo in Finance: Extending for High Dimensional Problems. Economia Aplicada 9 (2005) 203Google Scholar
  67. 67. Sloane, N.: Orthogonale Felder (2009). URL http://neilsloane.com/oadir/. (abgerufen 11/2016) 204
  68. 68. Sloane, N.: NOA: Program for Constructing Orthogonal Arrays, Near-Orthogonal Arrays and Supersaturated Designs (2016). URL http://designcomputing.net/gendex/noa/. (abgerufen 11/2016) 204
  69. 69. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. U.S.S.R. Computational Math. and Math. Phys 7, pp. 86–112 (1967) 203Google Scholar
  70. 70. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, pp. 143–151 (1987) 206Google Scholar
  71. 71. Tang, B.: Orthogonal array-based latin hypercubes. Journal of the American Statistical Association 88, pp. 1392–1397 (1993) 206Google Scholar
  72. 72. Tang, Y., Fang, K.T.: Constructions for Uniform Designs under Wrap-around Discrepancy. In: Symposium on the Uniform Experimential Design (2003) 197Google Scholar
  73. 73. Tezuka, S.: Random and Quasi-Random Point Sets, Lecture Notes in Statistics, chap. Financial applications of Monte Carlo and quasi-Monte Carlo methods, pp. 303–332. Springer Verlag, Berlin (1998) 203Google Scholar
  74. 74. Wang, Y., Fang, K.: A note on uniform distribution and experimental design. KeXue TongBao 26, pp. 485–489 (1981) 194, 210Google Scholar
  75. 75. Warnock, T.: Computational investigations of low discrepancy point sets. In: Applications of Number Theory to Numerical Analysis, pp. 319–343. Zaremba, S.K. (1972) 195Google Scholar
  76. 76. Wichura, M.: Algorithm AS 241: The Percentage Points of the Normal Distribution. Applied Statistics 37, pp. 477–484 (1988) 220Google Scholar
  77. 77. Winker, P.: Optimization Heuristics in Econometrics : Applications of Threshold Accepting. Wiley, Chichester (2000) 215Google Scholar
  78. 78. Winker, P., Fang, K.T.: Application of Threshold-Accepting to the Evaluation of the Discrepancy of a Set of Points. SIAM J. Numer. Anal. 34(5), pp. 2028–2042 (1997) 195Google Scholar
  79. 79. Xu, H.: An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs. Tech. rep., Department of Statistics, University of California, Los Angeles (2000). URL http://repositories.cdlib.org/cgi/viewcontent.cgi?article=1210&context=uclastat. (abgerufen 11/2016) 204
  80. 80. Xu, H.: An Algorithm for Constructing Orthogonal and Nearly Orthogonal Arrays with Mixed Levels and Small Runs. Technometrics 44, pp. 356–368 (2002) 204Google Scholar
  81. 81. Ye, K.: Orthogonal Column Latin Hypercubes and their application in Computer Experiments. Journal of the American Statistical Association 93, pp. 1430–1439 (1998) 207Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Karl Siebertz
    • 1
  • David van Bebber
    • 2
  • Thomas Hochkirchen
    • 3
  1. 1.AldenhovenDeutschland
  2. 2.AachenDeutschland
  3. 3.VaalsNiederlande

Personalised recommendations