Sensitivitätsanalyse

  • Karl Siebertz
  • David van Bebber
  • Thomas Hochkirchen
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Je größer zu analysierende Systeme werden, desto wichtiger ist es frühzeitig zu verstehen, welche der untersuchten Faktoren einen signifikanten Einfluss auf die Systemantworten aufweisen. Dieses ermöglicht einerseits ein schnelles Verständnis des untersuchten Systems und andererseits die Möglichkeit, sich in folgenden Untersuchungen und Analysen auf entscheidende Faktoren zu fokussieren. In diesem Kapitel werden dazu grundlegende Definitionen verschiedener globaler Sensitivitätskennzahlen sowie Möglichkeiten zur Berechnung dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1. Albers, S., Skiera, B.: Marktforschung. Grundlagen - Methoden - Anwendungen, chap. Regressionsanalyse, pp. 205–236. C. Homburg (1999) 417Google Scholar
  2. 2. Chan, K., Saltelli, A., Tarantola, S.: Sensitivity analysis of model output: variance-based methods make the difference. In: S. Andradttir, K.J. Healy, D.H. Withers, B.L. Nelson (eds.) Proceedings of the 1997 Winter Simulation Conference (1997) 420Google Scholar
  3. 3. Cukier, R.I., Fortuin, C.M., Shuler, K.E., Petschek, A.G., Schaibly, J.H.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory. Journal of Chemical Physics 59, pp. 3873–3878 (1973) 425, 426, 427Google Scholar
  4. 4. Cukier, R.I., Levine, H.B., Shuler, K.E.: Nonlinear Sensitivity Analysis of Multiparameter Model Systems. Journal of Computational Physics 26, pp. 1–42 (1978) 425, 427Google Scholar
  5. 5. Cukier, R.I., Schaibly, J.H., Shuler, K.E.: Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III Analysis of the approximations. The Journal of Chemical Physics 63, pp. 1140–1149 (1975) 425Google Scholar
  6. 6. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments (Computer Science & Data Analysis). Chapman & Hall/CRC (2005) 192, 193, 194, 195, 197, 209, 210, 212, 213, 214, 219, 238, 254, 255, 417, 418, 419Google Scholar
  7. 7. Iman, R.L., Stephen, C.H.: A Robust Measure of Uncertainty Importance for Use in Fault Tree System Analysis. Risk Analysis 10(3), pp. 401–406 (1990) 421Google Scholar
  8. 8. Koda, M., McRae, G.J., Seinfeld, J.H.: Automatic Sensitivity Analysis of Kinetic Mechanisms. International J. Chemical Kinetics 11, pp. 427–444 (1979) 425, 427Google Scholar
  9. 9. McKay, D.M.: Evaluating prediction uncertainty. The Commission, Washington DC (1995) 419, 420, 421Google Scholar
  10. 10. McKay, D.M.: Nonparametric variance-based methods of assessing uncertainty importance. Reliability engineering & system safety 57, pp. 267–279 (1997) 419Google Scholar
  11. 11. Pearson, K.: Mathematical contributions to the theory of evolution. In: Proceedings of the Royal Society of London, vol. 71, pp. 288–313 (1903) 419Google Scholar
  12. 12. Reedijk, C.: Sensitivity Analysis of Model Output: Performance of various local and global sensitivity measures on reliability problems. Master’s thesis, Delft University of Technology (2000) 415, 419, 421, 427Google Scholar
  13. 13. Saltelli, A.: Sensitivity analysis of model output: An investigation of new techniques. Computational statistics & data analysis (1993) 420Google Scholar
  14. 14. Saltelli, A., Tarantola, S., Chan, K.P.S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1), pp. 39–56 (1999) 425, 426, 427, 428Google Scholar
  15. 15. Sobol, I.M.: Sensitivity analysis for non-linear mathematical models. Mathematical Modelling Computational Experiment 1, pp. 407–414 (1993) 426Google Scholar
  16. 16. Sobol, I.M.: Global Sensitivity Indices for Nonlinear Mathematical Models and Their Monte Carlo Estimates. Math. Comput. Simul. 55(1-3), pp. 271–280 (2001) 422, 423, 424Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Karl Siebertz
    • 1
  • David van Bebber
    • 2
  • Thomas Hochkirchen
    • 3
  1. 1.AldenhovenDeutschland
  2. 2.AachenDeutschland
  3. 3.VaalsNiederlande

Personalised recommendations