Optimierung

  • Karl Siebertz
  • David van Bebber
  • Thomas Hochkirchen
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Die Optimierung komplexer Systeme läuft zumeist auf einen Kompromiss zwischen verschiedenen Qualitätsgrößen hinaus. Eine sinnvolle Zusammenfassung auf eine globale Qualitätsgröße ist dabei meist nicht sinnvoll, da der Lösungsbereich deutlich eingeschränkt und bereits vor der eigentlichen Optimierung eine noch unbekannte Lösung favorisiert wird. Dieses Kapitel befasst sich daher mit der multidimensionalen Optimierung, bei der alle Zielgrößen parallel betrachtet und optimiert werden. Aus den ermittelten Lösungen, die unterschiedliche Kompromisse zwischen den einzelnen Optimierungszielen enthalten, kann im Anschluss ein guter Kompromiss auf Basis aller vorhandenen Daten (Qualitätsgrößen plus zugehöriger Faktoreinstellungen) ausgewählt werden. Neben verschiedenen Grundlagen zur multidimensionalen Optimierung werden einige Verfahren aus dem Bereich genetischer (z.B. NSGAII) und naturanaloger Anlgorithmen (z.B. Particle Swarm) dargestellt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. 1. Alvarez-Benitez, J.E., Everson, R.M., Fieldsend, J.E.: A MOPSO algorithm based exclusively on pareto dominance concepts. In: Evolutionary Multi-Criterion Optimization, pp. 459–473. Springer (2005) 348, 349, 350, 351Google Scholar
  2. 2. Bader, J., Zitzler, E.: HypE: An Algorithm for Fast Hypervolume-Based Many-Objective Optimization. TIK Report 286, Computer Engineering and Networks Laboratory (TIK), ETH Zürich (2008) 375Google Scholar
  3. 3. Bader, J., Zitzler, E.: A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces. In: Conference on Multiple Objective and Goal Programming (MOPGP 2008), Lecture Notes in Economics and Mathematical Systems. Springer (2009) 375Google Scholar
  4. 4. Ballester, P., Carter, J.: Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions in Multi-modal Optimization. In: Proceedings of the 2003 Genetic and Evolutionary Computation Conference (GECCO-03), pp. 706–717. Springer (2003) 355Google Scholar
  5. 5. Ballester, P., Carter, J.: An Effective Real-Parameter Genetic Algorithm with Parent Centric Normal Crossover for Multimodal Optimisation. In: Proceedings of the Adaptive Computing in Design and Manufacture, pp. 901–913. Springer (2004) 355Google Scholar
  6. 6. Bingham, D., Surjanovic, S.: Optimization Test Problems (2015). URL http://www.sfu.ca/~ssurjano/optimization.html. (abgerufen 11/2016) 339
  7. 7. Bowen, T.J.: HASO: Hypervolume approximation based on slicing objectives. Ph.D. thesis, School of Computer Science and Software Engineering, The University of Western Australia (2010) 375Google Scholar
  8. 8. Cheng, M.Y., Prayogo, D.: Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Computers and Structures 139, pp. 98–112 (2014) 347Google Scholar
  9. 9. Chittka, L., Thomson, J.,Waser, N.: Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86, pp. 361–177 (1999) 344Google Scholar
  10. 10. Corne, D., Knowles, J., Oates, M.: The Pareto envelope-based selection algorithm for multiobjective optimization. In: Proceeding of the sixth International Conference on Parallel Problem Solving from Nature VI (PPSN VI), pp. 839–848 (2000) 358Google Scholar
  11. 11. Czyzak, P., Jaszkiewicz, A.: Pareto simulated annealing – a metaheuristic technique for multiple-objective combinatorial optimization. Journal of Multi-Criteria Decision Analysis 7(1), pp. 34–47 (1998) 368Google Scholar
  12. 12. Deb, K.: A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II. Tech. rep., Kanpur Genetic Algorithms Laboratory (2000). URL http://www.iitk.ac.in/kangal/papers/tech2000001.ps.gz. (abgerufen 11/2016) 350, 358, 361, 368
  13. 13. Deb, K.: Software Developed at KanGAL (2014). URL http://www.iitk.ac.in/kangal/codes.shtml. (abgerufen 11/2016) 350, 358
  14. 14. Deb, K., Agrawal, R.: Simulated binary crossover for continuous search space. ComplexSystem 9, pp. 115–148 (1995) 355Google Scholar
  15. 15. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. Lecture Notes in Computer Science 2000, pp. 849–858 (2000) 350Google Scholar
  16. 16. Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for realparameter optimization. Evolutionary Computation 10(4), pp. 371–395 (2002) 350, 355Google Scholar
  17. 17. Deb, K., Kumar, A.: Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems. Complex Systems 9, pp. 115–148 (1995) 355Google Scholar
  18. 18. Deb, K., Mohan, M., Mishra, S.: A Fast Multi-Objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. Tech. rep., Kanpur Genetic Algorithms Laboratory (2003). URL http://www.iitk.ac.in/kangal/papers/k2003002.pdf. (abgerufen 11/2016) 358, 364
  19. 19. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, pp. 182–197 (2002) 358, 359Google Scholar
  20. 20. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: D.L. Whitley (ed.) Foundation of Genetic Algorithms 2, pp. 187–202. Morgan Kaufmann., San Mateo, CA (1993) 355Google Scholar
  21. 21. Fleischer, M.: The Measure of Pareto Optima Applications to Multi-objective Metaheuristics. In: C. Fonseca, P. Fleming, E. Zitzler, L. Thiele, K. Deb (eds.) Evolutionary Multi-Criterion Optimization, Lecture Notes in Computer Science, vol. 2632, pp. 519–533. Springer Berlin Heidelberg (2003) 375Google Scholar
  22. 22. Fonseca, C.M., Fleming, P.J.: Genetic Algorithm for multiobjective optimization: Formulation, Discussion and Generalization. In: Proceedings of the 5th International Conference on Genetic Algorithms, pp. 416–423 (1993) 358Google Scholar
  23. 23. Fonseca, C.M., Fleming, P.J.: Muliobjective Optimization and multiple Constraint Handling with Evolutionary Algorithms Part I: A unified Formulation. In: IEEE Transactions on Systems, Man and Cybernetics, vol. 28, pp. 26–37 (1998) 328, 330, 358Google Scholar
  24. 24. Fonseca, C.M., Fleming, P.J.: Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example. IEEE Transactions on Systems 28(1), pp. 38–47 (1998) 328, 330Google Scholar
  25. 25. Gigerenzer, G., Todd, P.M., Group, A.R.G.A.R.: Simple heuristics that make us smart. Oxford University Press (2000) 325Google Scholar
  26. 26. Grosan, C., Oltean, M., Dumitrescu, D.: Performance metrics for multiobjective optimization evolutionary algorithms. In: Proceedings of the Conference on Applied and Industrial Mathematics (CAIM ’03) (2003) 367Google Scholar
  27. 27. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-dominated set. IMM, Department of Mathematical Modelling, Technical University of Denmark (1998) 368, 369, 372, 373Google Scholar
  28. 28. Horn, J., Nafpliotis, N.: Multiobjective optimization using the niched pareto genetic algorithm. Tech. rep., University of Illinois USA (1993) 358Google Scholar
  29. 29. Jaszkiewicz, A.: Multiple objective metaheuristic algorithms for combinatorical optimization. Ph.D. thesis, Poznan University of Technology (2001) 370Google Scholar
  30. 30. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995) 336Google Scholar
  31. 31. Knowles, J.D.: Local-Search and Hybrid Evolutionary Algorithms for Pareto Optimization. Ph.D. thesis, The University of Reading, Department of Computer Science (2002) 368Google Scholar
  32. 32. Knowles, J.D., Corne, D.W.: Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation 8, pp. 149–172 (2000) 358Google Scholar
  33. 33. Kursawe, F.: A Variant of Evolution Strategies for Vector Optimization. In: Proceedings of the 1st Workshop on Parallel Problem Solving from Nature, pp. 193–197. Springer-Verlag, London (1990) 361Google Scholar
  34. 34. Lin, C.Y., Hajela, P.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, pp. 99–107 (1992) 358Google Scholar
  35. 35. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evolutionary Computation Journal 12, pp. 273–302 (2004) 355Google Scholar
  36. 36. Lygoe, R.J.: Complexity Reduction in High-Dimensional Multi-Objective Optimisation. Ph.D. thesis, University of Sheffield (2010) 328, 330Google Scholar
  37. 37. Miettinen, K.: Nonlinear Multiobjective Optimization, International Series in Operations Research and Management Science, vol. 12. Kluwer Academic Publishers, Dordrecht (1999) 335Google Scholar
  38. 38. Mondrzyk, D.: Entwurf und Analyse metaheuristischer Verfahren zum Einsatz im Bereich der Motoroptimierung. Master’s thesis, RWTH Aachen (2013) 338, 339Google Scholar
  39. 39. Ono, I., Kobayashi, S.: A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover. In: Proceedings of the 7th International Conference on Genetic Algorithms, pp. 246–253 (1997) 355Google Scholar
  40. 40. Padhye, N.: Comparison of Archiving Methods in Multi-objective particle Swarm Optimization (MOPSO): Empirical Study. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09, pp. 1755–1756. ACM (2009) 348Google Scholar
  41. 41. Pavlyukevich, I.: Lévy flights, non-local search and simulated annealing. Journal of Computational Physics 226(2), pp. 1830 – 1844 (2007) 345Google Scholar
  42. 42. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press (2007) 199, 203, 220, 254, 265, 276, 277, 281, 285, 307, 334, 381, 398, 400Google Scholar
  43. 43. Raghuwanshi, M., Kakde, O.: Survey on Multiobjective Evolutionary and Real Coded Genetic Algorithms. Complexity International 11, pp. 150–161 (2005) 358Google Scholar
  44. 44. Schaffer, J.: Multi objective optimization with vector evaluated genetic algorithms. Ph.D. thesis, Vanderbilt University, Nashville, USA (1984) 358Google Scholar
  45. 45. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Ph.D. thesis, Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics (1995) 368Google Scholar
  46. 46. Takahashi, O., Kobayashi, S.: An adaptive neighboring search using crossover-like mutation for multi modal function optimization. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 261–267 (2001) 355Google Scholar
  47. 47.van Veldhuizen, D.A.: Multiobjective Evolutionary Algorithms: Classifications, Analyses and New Innovations. Ph.D. thesis, Graduate School of Engineering of the Air Force Institute of Technology (1999) 368, 374Google Scholar
  48. 48.Voigt, H., Mühlenbein, H., Cvetkovic, D.: Fuzzy Recombination for the Breeder Genetic Algorithm. In: Proc. of the Sixth International Conference on Genetic Algorithms, pp. 104–111 (1995). URL http://www.muehlenbein.org/fuzzy95.pdf. (abgerufen 11/2016) 355
  49. 49.Wikipedia: Test functions for optimization. URL http://en.wikipedia.org/w/index.php?title=Test_functions_for_optimization. (abgerufen 11/2016) 339
  50. 50. Xie, J., Zhou, Y., Chen, H.: A Novel Bat Algorithm Based on Differential Operator and Lévy Flights Trajectory. Computational Intelligence and Neuroscience 2013, p. 13 (2013) 342Google Scholar
  51. 51. Yang, X.S.: Firefly Algorithms for Multimodal Optimization. In: O. Watanabe, T. Zeugmann (eds.) Stochastic Algorithms: Foundations and Applications, Lecture Notes in Computer Science, vol. 5792, pp. 169–178. Springer Berlin Heidelberg (2009) 340Google Scholar
  52. 52. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Evolutionary Computation (2010) 341, 342Google Scholar
  53. 53.Yang, X.S.: A New Metaheuristic Bat-Inspired Algorithm. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010); Studies in Computational Intelligence 284, pp. 65–74 (2010) 342Google Scholar
  54. 54. Yang, X.S.: Flower pollination algorithm for global optimization. Unconventional Computation and Natural Computation 2012, Lecture Notes in Computer Science 7445, pp. 240–249 (2012) 344, 345Google Scholar
  55. 55. Yang, X.S.: Nature-Inspired Optimization Algorithms. Elsevier Ltd, Oxford (2014) 341, 342, 344Google Scholar
  56. 56. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. thesis, Institut für Technische Informatik und Kommunikationsnetze Computer Engineering and Networks Laboratory (1999) 358, 368, 374Google Scholar
  57. 57. Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms: Empirical Results. Evolutionary Computation 8, pp. 173–195 (2000) 367Google Scholar
  58. 58. Zitzler, E., Knowles, J., Thiele, L.: Quality Assessment of Pareto Set Approximations. In: J. Branke, K. Deb, K. Miettinen, R. Slowinski (eds.) Multiobjective Optimization, Lecture Notes in Computer Science, vol. 5252, pp. 373–404. Springer Berlin, Heidelberg (2008) 369Google Scholar
  59. 59. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zürich (2001). URL http://www.tik.ee.ethz.ch/sop/publicationListFiles/zlt2001a.pdf. (abgerufen 11/2016) 358
  60. 60. Zitzler, E., Thiele, L.: An evolutionary algorithm for multiobjective optimization: the strength Pareto approach. Tech. rep., Computer Engineering and Networks Laboratory (TIK), ETH Zürich (1998) 358Google Scholar
  61. 61. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3, pp. 257– 271 (1999) 358Google Scholar
  62. 62. Zitzler., E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance Assessment of Multiobjective Optimizers: An Analysis and Review. Trans. Evol. Comp 7(2), pp. 117–132 (2003) 327Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Karl Siebertz
    • 1
  • David van Bebber
    • 2
  • Thomas Hochkirchen
    • 3
  1. 1.AldenhovenDeutschland
  2. 2.AachenDeutschland
  3. 3.VaalsNiederlande

Personalised recommendations