Advertisement

How to Predict Knee Kinematics During an ACL Injury

  • Zoe Englander
  • Shaun K. Stinton
  • Thomas P. BranchEmail author
Chapter

Abstract

The factors that ultimately lead to an anterior cruciate ligament (ACL) injury are complex. The type of sports activity, population segment, posture, bone morphology, and the internal biomechanics of the knee each play a role in risk of injury. A multitude of studies have been performed in these individual areas, which have provided information to form a prediction algorithm for ACL injury. Sports activities, such as soccer, that place a premium on jumping and landing appear to have an increased incidence of these injuries. Female athletes appear to be at a higher risk, potentially due to differences in lower extremity shape or motion patterns. Bone morphology may contribute to the likelihood of ACL injury (i.e., posterior slope and relative tibial size), and the dimensions of the “joint play envelope” may help determine the amount of force necessary to cause injury. While there is no absolute consensus on the biomechanical mechanisms leading to non-contact ACL injury, there is extensive evidence to indicate that ACL injury results from a combination of these factors. Clinicians should consider these factors when mapping out a safe return to play for sports such as soccer. Those athletes more at risk for injury may benefit from more intensive or specific physical training.

Top 5 Evidence-Based References

  1. Branch TP, Stinton SK, Browne JE, Lording TD, Hutton WC (2017) A robotic system for measuring the relative motion between the Femur and the Tibia. In: Rotatory knee instability. Springer, New York, pp 199–220CrossRefGoogle Scholar
  2. DeFrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246CrossRefPubMedGoogle Scholar
  3. Lording T, Stinton SK, Neyret P, Branch TP (2017) Diagnostic findings caused by cutting of the iliotibial tract and anterolateral ligament in an ACL intact knee using a standardized and automated clinical knee examination. Knee Surg Sports Traumatol Arthrosc 25(4):1161–1169Google Scholar
  4. Li G, DeFrate LE, Rubash HE, Gill TJ (2005) In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthopaedic Res 23(2): 340–344Google Scholar
  5. Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthopaedic Res 13(6): 930–935Google Scholar

References

  1. 1.
    Hewett TE, Myer GD, Ford KR, Heidt RS, Colosimo AJ, McLean SG, Van den Bogert AJ, Paterno MV, Succop P (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes a prospective study. Am J Sports Med 33(4):492–501CrossRefPubMedGoogle Scholar
  2. 2.
    Hewett TE, Roewer B, Ford K, Myer G (2015) Multicenter trial of motion analysis for injury risk prediction: lessons learned from prospective longitudinal large cohort combined biomechanical-epidemiological studies. Braz J Phys Ther 19(5):398–409CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010a) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45:245–252. bjsports 69351CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2010b) Development and validation of a clinic-based prediction tool to identify female athletes at high risk for anterior cruciate ligament injury. Am J Sports Med 38(10):2025–2033CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Collins JE, Katz JN, Donnell-Fink LA, Martin SD, Losina E (2013) Cumulative incidence of ACL reconstruction after ACL injury in adults role of age, sex, and race. Am J Sports Med 41(3):544–549CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, DeMaio M, Dick RW, Engebretsen L, Garrett WE, Hannafin JA (2006) Understanding and preventing noncontact anterior cruciate ligament injuries a review of the Hunt Valley II meeting, January 2005. Am J Sports Med 34(9):1512–1532CrossRefPubMedGoogle Scholar
  7. 7.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury–reduction regimen. Arthroscopy 23(12):1320–1325.e6CrossRefPubMedGoogle Scholar
  8. 8.
    Quatman CE, Hewett TE (2009) The anterior cruciate ligament injury controversy: is “valgus collapse” a sex-specific mechanism? Br J Sports Med 43(5):328–335CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Agel J, Rockwood T, Klossner D (2016) Collegiate ACL injury rates across 15 sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004-2005 through 2012-2013). Clin J Sport Med 26(6):518–523CrossRefPubMedGoogle Scholar
  10. 10.
    Beck NA, Lawrence JTR, Nordin JD, DeFor TA, Tompkins M (2017) ACL tears in school-aged children and adolescents over 20 years. Pediatrics 139(3):e20161877CrossRefPubMedGoogle Scholar
  11. 11.
    Kaeding CC, Léger-St-Jean B, Magnussen RA (2017) Epidemiology and diagnosis of anterior cruciate ligament injuries. Clin Sports Med 36(1):1–8CrossRefPubMedGoogle Scholar
  12. 12.
    Sayampanathan AA, Howe BKT, Bin Abd Razak HR, Chi CH, Tan AHC (2017) Epidemiology of surgically managed anterior cruciate ligament ruptures in a sports surgery practice. J Orthop Surg (Hong Kong) 25(1):2309499016684289Google Scholar
  13. 13.
    Takahashi S, Okuwaki T (2017) Epidemiological survey of anterior cruciate ligament injury in Japanese junior high school and high school athletes: cross-sectional study. Res Sports Med 3:266–276CrossRefGoogle Scholar
  14. 14.
    Dorf R (2001) In: Bishop RF, Modern control systems 9Google Scholar
  15. 15.
    Boden BP, Breit I, Sheehan FT (2009) Tibiofemoral alignment: contributing factors to noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 91(10):2381–2389CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    LaPrade RF, Burnett QM (1994) Femoral intercondylar notch stenosis and correlation to anterior cruciate ligament injuries: a prospective study. Am J Sports Med 22(2):198–203CrossRefPubMedGoogle Scholar
  17. 17.
    Souryal TO, Freeman TR (1993) Intercondylar notch size and anterior cruciate ligament injuries in athletes: a prospective study. Am J Sports Med 21(4):535–539CrossRefPubMedGoogle Scholar
  18. 18.
    Souryal TO, Moore HA, Evans JP (1988) Bilaterality in anterior cruciate ligament injuries associated intercondylar notch stenosis. Am J Sports Med 16(5):449–454CrossRefPubMedGoogle Scholar
  19. 19.
    Dienst M, Schneider G, Altmeyer K, Voelkering K, Georg T, Kramann B, Kohn D (2007) Correlation of intercondylar notch cross sections to the ACL size: a high resolution MR tomographic in vivo analysis. Arch Orthop Trauma Surg 127(4):253–260CrossRefPubMedGoogle Scholar
  20. 20.
    Brandon ML, Haynes PT, Bonamo JR, Flynn MI, Barrett GR, Sherman MF (2006) The association between posterior-inferior tibial slope and anterior cruciate ligament insufficiency. Arthroscopy 22(8):894–899CrossRefPubMedGoogle Scholar
  21. 21.
    Viskontas DG, Giuffre BM, Duggal N, Graham D, Parker D, Coolican M (2008) Bone bruises associated with ACL rupture correlation with injury mechanism. Am J Sports Med 36(5):927–933CrossRefPubMedGoogle Scholar
  22. 22.
    Yu B, Lin C-F, Garrett WE (2006) Lower extremity biomechanics during the landing of a stop-jump task. Clin Biomech 21(3):297–305CrossRefGoogle Scholar
  23. 23.
    Voos JE, Suero EM, Citak M, Petrigliano FP, Bosscher MR, Citak M, Wickiewicz TL, Pearle AD (2012) Effect of tibial slope on the stability of the anterior cruciate ligament–deficient knee. Knee Surg Sports Traumatol Arthrosc 20(8):1626–1631Google Scholar
  24. 24.
    Bojicic KM, Beaulieu ML, Imaizumi Krieger DY, Ashton-Miller JA, Wojtys EM (2017) Association between lateral posterior Tibial slope, body mass index, and ACL injury risk. Orthop J Sports Med 5(2):2325967116688664CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yue D, Wang B, Wang W, Guo W, Zhang Q (2013) Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee. Zhonghua Yi Xue Za Zhi 93(17):1309–1312PubMedGoogle Scholar
  26. 26.
    Branch TP, Stinton SK, Sharma A, Lavoie F, Guier C, Neyret P. The impact of bone morphology on the outcome of the pivot shift test: a cohort study. BMC Musculoskeletal Disorders DOI:  10.1186/s12891-017-1798-4
  27. 27.
    Musahl V, Ayeni OR, Citak M, Irrgang JJ, Pearle AD, Wickiewicz TL (2010) The influence of bony morphology on the magnitude of the pivot shift. Knee Surg Sports Traumatol Arthrosc 18(9):1232–1238CrossRefPubMedGoogle Scholar
  28. 28.
    Edixhoven P, Huiskes R, De Graaf R (1989) Anteroposterior drawer measurements in the knee using an instrumented test device. Clin Orthop Relat Res (247):232–242Google Scholar
  29. 29.
    Edixhoven P, Huiskes R, De Graaf R, Van Rens TJ, Slooff T (1987) Accuracy and reproducibility of instrumented knee-drawer tests. J Orthop Res 5(3):378–387CrossRefPubMedGoogle Scholar
  30. 30.
    Markolf KL, Graff-Radford A, Amstutz H (1978) In vivo knee stability. A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am 60(5):664–674CrossRefPubMedGoogle Scholar
  31. 31.
    Markolf KL, Mensch J, Amstutz H (1976) Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594CrossRefPubMedGoogle Scholar
  32. 32.
    Shultz SJ, Shimokochi Y, Nguyen A-D, Schmitz RJ, Beynnon BD, Perrin DH (2007a) Measurement of varus-valgus and internal-external rotational knee laxities in vivo-part II: relationship with anterior-posterior and general joint laxity in males and females. J Orthop Res 25(8):989–996CrossRefPubMedGoogle Scholar
  33. 33.
    Shultz SJ, Shimokochi Y, Nguyen AD, Schmitz RJ, Beynnon BD, Perrin DH (2007b) Measurement of varus–valgus and internal–external rotational knee laxities in vivo—part I: assessment of measurement reliability and bilateral asymmetry. J Orthop Res 25(8):981–988CrossRefPubMedGoogle Scholar
  34. 34.
    Bedi A, Musahl V, Lane C, Citak M, Warren RF, Pearle AD (2010a) Lateral compartment translation predicts the grade of pivot shift: a cadaveric and clinical analysis. Knee Surg Sports Traumatol Arthrosc 18(9):1269–1276CrossRefPubMedGoogle Scholar
  35. 35.
    Bedi A, Musahl V, O’Loughlin P, Maak T, Citak M, Dixon P, Pearle AD (2010b) A comparison of the effect of central anatomical single-bundle anterior cruciate ligament reconstruction and double-bundle anterior cruciate ligament reconstruction on pivot-shift kinematics. Am J Sports Med 38(9):1788–1794CrossRefPubMedGoogle Scholar
  36. 36.
    Citak M, Suero EM, Rozell JC, Bosscher MRF, Kuestermeyer J, Pearle AD (2011) A mechanized and standardized pivot shifter: technical description and first evaluation. Knee Surg Sports Traumatol Arthrosc 19(5):707–711CrossRefPubMedGoogle Scholar
  37. 37.
    Hoshino Y, Araujo P, Ahlden M, Moore CG, Kuroda R, Zaffagnini S, Karlsson J, Fu FH, Musahl V (2012) Standardized pivot shift test improves measurement accuracy. Knee Surg Sports Traumatol Arthrosc 20(4):732–736CrossRefPubMedGoogle Scholar
  38. 38.
    Lopomo N, Signorelli C, Rahnemai-Azar AA, Raggi F, Hoshino Y, Samuelsson K, Musahl V, Karlsson J, Kuroda R, Zaffagnini S (2016) Analysis of the influence of anaesthesia on the clinical and quantitative assessment of the pivot shift: a multicenter international study. Knee Surg Sports Traumatol Arthrosc:1–8Google Scholar
  39. 39.
    Muller B, Hofbauer M, Rahnemai-Azar AA, Wolf M, Araki D, Hoshino Y, Araujo P, Debski RE, Irrgang JJ, Fu FH (2016) Development of computer tablet software for clinical quantification of lateral knee compartment translation during the pivot shift test. Comput Methods Biomech Biomed Engin 19(2):217–228CrossRefPubMedGoogle Scholar
  40. 40.
    Musahl V, Bedi A, Citak M, O’Loughlin P, Choi D, Pearle AD (2011) Effect of single-bundle and double-bundle anterior cruciate ligament reconstructions on pivot-shift kinematics in anterior cruciate ligament–and meniscus-deficient knees. Am J Sports Med 39(2):289–295CrossRefPubMedGoogle Scholar
  41. 41.
    Musahl V, Hoshino Y, Ahlden M, Araujo P, Irrgang JJ, Zaffagnini S, Karlsson J, Fu FH (2012a) The pivot shift: a global user guide. Knee Surg Sports Traumatol Arthrosc 20(4):724–731CrossRefPubMedGoogle Scholar
  42. 42.
    Musahl V, Hoshino Y, Becker R, Karlsson J (2012b) Rotatory knee laxity and the pivot shift. SpringerGoogle Scholar
  43. 43.
    Petrigliano FA, Musahl V, Suero EM, Citak M, Pearle AD (2011) Effect of meniscal loss on knee stability after single-bundle anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 19(1):86–93CrossRefGoogle Scholar
  44. 44.
    Suero EM, Njoku IU, Voigt MR, Lin J, Koenig D, Pearle AD (2013) The role of the iliotibial band during the pivot shift test. Knee Surg Sports Traumatol Arthrosc 21(9):2096–2100CrossRefPubMedGoogle Scholar
  45. 45.
    Sundemo D, Alentorn-Geli E, Hoshino Y, Musahl V, Karlsson J, Samuelsson K (2016) Objective measures on knee instability: dynamic tests: a review of devices for assessment of dynamic knee laxity through utilization of the pivot shift test. Curr Rev Muscoskelet Med 9(2):148–159CrossRefGoogle Scholar
  46. 46.
    Tanaka M, Vyas D, Moloney G, Bedi A, Pearle A, Musahl V (2012) What does it take to have a high-grade pivot shift? Knee Surg Sports Traumatol Arthrosc 20(4):737–742CrossRefPubMedGoogle Scholar
  47. 47.
    Noyes FR (2016) Noyes' knee disorders: surgery, rehabilitation, clinical outcomes. Elsevier Health Sciences, Philadelphia, PAGoogle Scholar
  48. 48.
    Butler DL, Noyes F, Grood E (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. JBJS 62(2):259–270CrossRefGoogle Scholar
  49. 49.
    DeFrate LE, Nha KW, Papannagari R, Moses JM, Gill TJ, Li G (2007) The biomechanical function of the patellar tendon during in-vivo weight-bearing flexion. J Biomech 40(8):1716–1722CrossRefPubMedGoogle Scholar
  50. 50.
    Inderhaug E, Stephen JM, Williams A, Amis AA (2017) Biomechanical comparison of anterolateral procedures combined with anterior cruciate ligament reconstruction. Am J Sports Med 45(2):347–354CrossRefPubMedGoogle Scholar
  51. 51.
    Kittl C, El-Daou H, Athwal KK, Gupte CM, Weiler A, Williams A, Amis AA (2016) The role of the anterolateral structures and the ACL in controlling laxity of the intact and ACL-deficient knee. Am J Sports Med 44(2):345–354CrossRefPubMedGoogle Scholar
  52. 52.
    Li G, Moses J, Papannagari R, Pathare N, Defrate L (2007a) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Orthop Sports Phys 37(7):421–422Google Scholar
  53. 53.
    Li G, Papannagari R, Defrate LE, Doo Yoo J, Eun Park S, J Gill T (2007b) The effects of ACL deficiency on mediolateral translation and varus–valgus rotation. Acta Orthop 78(3):355–360CrossRefPubMedGoogle Scholar
  54. 54.
    Li G, Rudy T, Sakane M, Kanamori A, Ma C, Woo S-Y (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32(4):395–400CrossRefPubMedGoogle Scholar
  55. 55.
    Li G, Rudy TW, Allen C, Sakane M, Woo SLY (1998) Effect of combined axial compressive and anterior tibial loads on in situ forces in the anterior cruciate ligament: a porcine study. J Orthop Res 16(1):122–127CrossRefPubMedGoogle Scholar
  56. 56.
    Li G, Zayontz S, Most E, DeFrate LE, Suggs JF, Rubash HE (2004) In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 22(2):293–297CrossRefPubMedGoogle Scholar
  57. 57.
    Lord BR, El-Daou H, Sabnis BM, Gupte CM, Wilson AM, Amis AA (2016) Biomechanical comparison of graft structures in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc:1–10Google Scholar
  58. 58.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935CrossRefPubMedGoogle Scholar
  59. 59.
    Chappell JD, Yu B, Kirkendall DT, Garrett WE (2002) A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am J Sports Med 30(2):261–267CrossRefPubMedGoogle Scholar
  60. 60.
    Kadaba M, Ramakrishnan H, Wootten M, Gainey J, Gorton G, Cochran G (1989) Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J Orthop Res 7(6):849–860CrossRefPubMedGoogle Scholar
  61. 61.
    Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE (2001) A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin Biomech 16(5):438–445CrossRefGoogle Scholar
  62. 62.
    Shultz SJ, Nguyen A-D, Leonard MD, Schmitz RJ (2009) Thigh strength and activation as predictors of knee biomechanics during a drop jump task. Med Sci Sports Exerc 41(4):857CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Branch TP, Hunter R, Donath M (1989) Dynamic EMG analysis of anterior cruciate deficient legs with and without bracing during cutting. Am J Sports Med 17(1):35–41CrossRefPubMedGoogle Scholar
  64. 64.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007a) Mechanisms of anterior cruciate ligament injury in basketball video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefPubMedGoogle Scholar
  65. 65.
    Krosshaug T, Slauterbeck JR, Engebretsen L, Bahr R (2007b) Biomechanical analysis of anterior cruciate ligament injury mechanisms: three-dimensional motion reconstruction from video sequences. Scand J Med Sci Sports 17(5):508–519CrossRefPubMedGoogle Scholar
  66. 66.
    Branch T, Lavoie F, Guier C, Branch E, Lording T, Stinton S, Neyret P (2015a) Single-bundle ACL reconstruction with and without extra-articular reconstruction: evaluation with robotic lower leg rotation testing and patient satisfaction scores. Knee Surg Sports Traumatol Arthrosc 23(10):2882–2891CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Branch T, Stinton S, Siebold R, Freedberg H, Jacobs C, Hutton W (2017) Assessment of knee laxity using a robotic testing device: a comparison to the manual clinical knee examination. Knee Surg Sports Traumatol Arthrosc 25(8):2460–2467Google Scholar
  68. 68.
    Branch T, Stinton S, Sternberg M, Hutton W, Lavoie F, Guier C, Neyret P (2015c) Robotic axial lower leg testing: repeatability and reproducibility. Knee Surg Sports Traumatol Arthrosc 23(10):2892–2899CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Branch TP, Stinton SK, Browne JE, Lording TD, Hutton WC (2017) A robotic system for measuring the relative motion between the femur and the tibia. In: Rotatory knee instability. Springer, New York, pp 199–220CrossRefGoogle Scholar
  70. 70.
    Espregueira-Mendes J, Andrade R, Leal A, Pereira H, Skaf A, Rodrigues-Gomes S, Oliveira JM, Reis RL, Pereira R (2016) Global rotation has high sensitivity in ACL lesions within stress MRI. Knee Surg Sports Traumatol Arthrosc:1–11Google Scholar
  71. 71.
    Espregueira-Mendes J, Pereira H, Sevivas N, Passos C, Vasconcelos JC, Monteiro A, Oliveira JM, Reis RL (2012) Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc 20(4):671–678CrossRefPubMedGoogle Scholar
  72. 72.
    Lording T, Stinton SK, Neyret P, Branch TP (2017) Diagnostic findings caused by cutting of the iliotibial tract and anterolateral ligament in an ACL intact knee using a standardized and automated clinical knee examination. Knee Surg Traumatol Arthrosc 25(4):1161–1169CrossRefGoogle Scholar
  73. 73.
    Stinton S, Siebold R, Freedberg H, Jacobs C, Branch T (2016) The use of a robotic tibial rotation device and an electromagnetic tracking system to accurately reproduce the clinical dial test. Knee Surg Sports Traumatol Arthrosc 24(3):815–822CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Li G, DeFrate LE, Rubash HE, Gill TJ (2005) In vivo kinematics of the ACL during weight-bearing knee flexion. J Orthop Res 23(2):340–344CrossRefPubMedGoogle Scholar
  75. 75.
    Taylor K, Cutcliffe H, Queen R, Utturkar G, Spritzer C, Garrett W, DeFrate L (2013) In vivo measurement of ACL length and relative strain during walking. J Biomech 46(3):478–483CrossRefPubMedGoogle Scholar
  76. 76.
    Taylor K, Terry M, Utturkar G, Spritzer C, Queen R, Irribarra L, Garrett W, DeFrate L (2011) Measurement of in vivo anterior cruciate ligament strain during dynamic jump landing. J Biomech 44(3):365–371CrossRefPubMedGoogle Scholar
  77. 77.
    Utturkar G, Irribarra L, Taylor K, Spritzer C, Taylor D, Garrett W, DeFrate LE (2013) The effects of a valgus collapse knee position on in vivo ACL elongation. Ann Biomed Eng 41(1):123–130CrossRefPubMedGoogle Scholar
  78. 78.
    DeFrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246CrossRefPubMedGoogle Scholar
  79. 79.
    Noyes F, Grood E (1986) Classification of ligament injuries: why an anterolateral laxity or anteromedial laxity is not a diagnostic entity. Instr Course Lect 36:185–200Google Scholar
  80. 80.
    Kaplan PA, Gehl RH, Dussault RG, Anderson MW, Diduch DR (1999) Bone contusions of the posterior lip of the medial Tibial plateau (Contrecoup injury) and associated internal derangements of the knee at MR imaging 1. Radiology 211(3):747–753CrossRefPubMedGoogle Scholar
  81. 81.
    Patel SA, Hageman J, Quatman CE, Wordeman SC, Hewett TE (2014) Prevalence and location of bone bruises associated with anterior cruciate ligament injury and implications for mechanism of injury: a systematic review. Sports Med 44(2):281–293CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Speer KP, Spritzer CE, Bassett FH III, Feagin JRJA, Garrett JRWE (1992) Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med 20(4):382–389CrossRefPubMedGoogle Scholar
  83. 83.
    Kim SY, Spritzer CE, Utturkar GM, Toth AP, Garrett WE, DeFrate LE (2015) Knee kinematics during noncontact anterior cruciate ligament injury as determined from bone bruise location. Am J Sports Med 43(10):2515–2521CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© ESSKA 2018

Authors and Affiliations

  • Zoe Englander
    • 1
    • 2
  • Shaun K. Stinton
    • 3
    • 4
  • Thomas P. Branch
    • 3
    • 4
    Email author
  1. 1.Department of OrthopedicsDuke UniversityDurhamUSA
  2. 2.Department of Biomedical EngineeringDuke UniversityDurhamUSA
  3. 3.University OrthopedicsDecaturUSA
  4. 4.ERMI Inc.AtlantaUSA

Personalised recommendations