Skip to main content

How Can MRI Help with Decision-Making?

  • Chapter
  • First Online:
Return to Play in Football

Abstract

Football athletes are subjected to a myriad of injuries inherent to this dynamic, fast-paced sport. Being the most widely played sport in the world, orthopedic surgeons frequently encounter common injuries to footballers. Anterior cruciate ligament (ACL) tears are potentially severe injuries that may threaten the career of these athletes. It may affect players from all ages, from recreational weekend athlete to world-class professional players. The interaction between cleats and the play surface, opponent contact, individual characteristics, and style of play all play a role in the occurrence of ACL tears. Its treatment, however, can be divided in two major categories: operative and non-operative. Although ACL reconstruction is considered by many as the gold-standard treatment for patients who want to return to football, there are situations when non-operative treatment may suffice. The decision of the appropriate timing to return to play is subject of much attention and discussion, and graft tears are daunting injuries that may jeopardize an athlete’s career. There is increasing interest to drive the scientific decision-making process that would aid doctors, athletic trainers, agents, managers, and footballers to tailor the rehabilitation process to each athlete, allowing return to pre-injury level of play. Magnetic resonance imaging (MRI) may provide invaluable information in assessing the healing and maturation process of reconstructed ACL graft. It is a noninvasive tool which may provide insight into the biomechanical properties of the graft itself. This chapter will explore the best available scientific evidence in using MRI to assess ACL healing and graft maturation during rehabilitation, as an additional tool to guide ACL-injured footballers to safely return to competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Top Five Evidence Based References

  • Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405

    Article  CAS  PubMed  Google Scholar 

  • Howell SM, Knox KE, Farley TE, Taylor MA (1995) Revascularization of a human anterior cruciate ligament graft during the first two years of implantation. Am J Sports Med 23(1):42–49

    Article  CAS  PubMed  Google Scholar 

  • Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. Am J Sports Med 29(6):751–761

    Article  CAS  PubMed  Google Scholar 

  • Fleming BC, Vajapeyam S, Connolly SA, Magarian EM, Murray MM (2011) The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech 44(16):2843–2846

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, Fu FH (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23(3):661–668

    Article  PubMed  Google Scholar 

References

  1. Cameron M, Buchgraber A, Passler H, Vogt M, Thonar E, Fu F, Evans CH (1997) The natural history of the anterior cruciate ligament-deficient knee. Changes in synovial fluid cytokine and keratan sulfate concentrations. Am J Sports Med 25(6):751–754

    Article  CAS  PubMed  Google Scholar 

  2. da Silveira Franciozi CE, Ingham SJ, Gracitelli GC, Luzo MV, FH F, Abdalla RJ (2014) Updates in biological therapies for knee injuries: anterior cruciate ligament. Curr Rev Musculoskelet Med 7(3):228–238

    Article  PubMed  PubMed Central  Google Scholar 

  3. Larsson S, Struglics A, Lohmander LS, Frobell R (2017) Surgical reconstruction of ruptured anterior cruciate ligament prolongs trauma-induced increase of inflammatory cytokines in synovial fluid: an exploratory analysis in the KANON trial. Osteoarthr Cartil 25(9):1443–1451

    Article  CAS  PubMed  Google Scholar 

  4. Ardern CL, Osterberg A, Tagesson S, Gauffin H, Webster KE, Kvist J (2014) The impact of psychological readiness to return to sport and recreational activities after anterior cruciate ligament reconstruction. Br J Sports Med 48(22):1613–1619

    Article  PubMed  Google Scholar 

  5. Ardern CL, Taylor NF, Feller JA, Webster KE (2012) Fear of re-injury in people who have returned to sport following anterior cruciate ligament reconstruction surgery. J Sci Med Sport 15(6):488–495

    Article  PubMed  Google Scholar 

  6. Ardern CL, Taylor NF, Feller JA, Webster KE (2013) A systematic review of the psychological factors associated with returning to sport following injury. Br J Sports Med 47(17):1120–1126

    Article  PubMed  Google Scholar 

  7. Duc SR, Zanetti M, Kramer J, Kach KP, Zollikofer CL, Wentz KU (2005) Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoronal images. Acta Radiol 46(7):729–733

    Article  CAS  PubMed  Google Scholar 

  8. Van Dyck P, Vanhoenacker FM, Lambrecht V, Wouters K, Gielen JL, Dossche L, Parizel PM (2013) Prospective comparison of 1.5 and 3.0-T MRI for evaluating the knee menisci and ACL. J Bone Joint Surg Am 95(10):916–924

    Article  PubMed  Google Scholar 

  9. Roychowdhury S, Fitzgerald SW, Sonin AH, Peduto AJ, Miller FH, Hoff FL (1997) Using MR imaging to diagnose partial tears of the anterior cruciate ligament: value of axial images. AJR Am J Roentgenol 168(6):1487–1491

    Article  CAS  PubMed  Google Scholar 

  10. Van Dyck P, Gielen JL, Vanhoenacker FM, Wouters K, Dossche L, Parizel PM (2012) Stable or unstable tear of the anterior cruciate ligament of the knee: an MR diagnosis? Skelet Radiol 41(3):273–280

    Article  Google Scholar 

  11. Murray MM, Martin SD, Martin TL, Spector M (2000) Histological changes in the human anterior cruciate ligament after rupture. J Bone Joint Surg Am 82-a(10):1387–1397

    Article  CAS  PubMed  Google Scholar 

  12. van Meer BL, Oei EH, Bierma-Zeinstra SM, van Arkel ER, Verhaar JA, Reijman M, Meuffels DE (2014) Are magnetic resonance imaging recovery and laxity improvement possible after anterior cruciate ligament rupture in nonoperative treatment? Arthroscopy 30(9):1092–1099

    Article  PubMed  Google Scholar 

  13. Weiler A, Peters G, Mäurer J, Unterhauser FN, Südkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. Am J Sports Med 29(6):751–761

    Article  CAS  PubMed  Google Scholar 

  14. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after anterior cruciate ligament reconstruction. Am J Sports Med 18(3):292–299

    Article  CAS  PubMed  Google Scholar 

  15. Ardern CL, Webster KE, Taylor NF, Feller JA (2011) Return to the preinjury level of competitive sport after anterior cruciate ligament reconstruction surgery: two-thirds of patients have not returned by 12 months after surgery. Am J Sports Med 39(3):538–543

    Article  PubMed  Google Scholar 

  16. Shino K, Inoue M, Horibe S, Nagano J, Ono K (1988) Maturation of allograft tendons transplanted into the knee. An arthroscopic and histological study. J Bone Joint Surg Br 70(4):556–560

    Article  CAS  PubMed  Google Scholar 

  17. Abe S, Kurosaka M, Iguchi T, Yoshiya S, Hirohata K (1993) Light and electron microscopic study of remodeling and maturation process in autogenous graft for anterior cruciate ligament reconstruction. Arthroscopy 9(4):394–405

    Article  CAS  PubMed  Google Scholar 

  18. Arai Y, Hara K, Takahashi T, Urade H, Minami G, Takamiya H, Kubo T (2008) Evaluation of the vascular status of autogenous hamstring tendon grafts after anterior cruciate ligament reconstruction in humans using magnetic resonance angiography. Knee Surg Sports Traumatol Arthrosc 16(4):342–347

    Article  PubMed  Google Scholar 

  19. Howell SM, Knox KE, Farley TE, Taylor MA (1995) Revascularization of a human anterior cruciate ligament graft during the first two years of implantation. Am J Sports Med 23(1):42–49

    Article  CAS  PubMed  Google Scholar 

  20. Terauchi R, Arai Y, Hara K, Minami G, Nakagawa S, Takahashi T, Ikoma K, Ueshima K, Shirai T, Fujiwara H, Kubo T (2016) Magnetic resonance angiography evaluation of the bone tunnel and graft following ACL reconstruction with a hamstring tendon autograft. Knee Surg Sports Traumatol Arthrosc 24(1):169–175

    Article  PubMed  Google Scholar 

  21. Dong S, Xie G, Zhang Y, Shen P, Huangfu X, Zhao J (2015) Ligamentization of autogenous hamstring grafts after anterior cruciate ligament reconstruction: midterm versus long-term results. Am J Sports Med 43(8):1908–1917

    Article  PubMed  Google Scholar 

  22. Nagelli CV, Hewett TE (2017) Should return to sport be delayed until 2 years after anterior cruciate ligament reconstruction? Biological and functional considerations. Sports Med 47(2):221–232

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rougraff B, Shelbourne KD, Gerth PK, Warner J (1993) Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction. Am J Sports Med 21(2):277–284

    Article  CAS  PubMed  Google Scholar 

  24. Paterno MV, Rauh MJ, Schmitt LC, Ford KR, Hewett TE (2014) Incidence of second ACL injuries 2 years after primary ACL reconstruction and return to sport. Am J Sports Med 42(7):1567–1573

    Article  PubMed  PubMed Central  Google Scholar 

  25. Weiler A, Peters G, Maurer J, Unterhauser FN, Sudkamp NP (2001) Biomechanical properties and vascularity of an anterior cruciate ligament graft can be predicted by contrast-enhanced magnetic resonance imaging. A two-year study in sheep. Am J Sports Med 29(6):751–761

    Article  CAS  PubMed  Google Scholar 

  26. Fleming BC, Vajapeyam S, Connolly SA, Magarian EM, Murray MM (2011) The use of magnetic resonance imaging to predict ACL graft structural properties. J Biomech 44(16):2843–2846

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hakozaki A, Niki Y, Enomoto H, Toyama Y, Suda Y (2015) Clinical significance of T2*-weighted gradient-echo MRI to monitor graft maturation over one year after anatomic double-bundle anterior cruciate ligament reconstruction: a comparative study with proton density-weighted MRI. Knee 22(1):4–10

    Article  PubMed  Google Scholar 

  28. Ma Y, Murawski CD, Rahnemai-Azar AA, Maldjian C, Lynch AD, FH F (2015) Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 23(3):661–668

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Freddie H. Fu M.D., D.sc. (Hon), D.ps. (Hon) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ESSKA

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albers, M.B.V., Shin, J., Fu, F.H. (2018). How Can MRI Help with Decision-Making?. In: Musahl, V., Karlsson, J., Krutsch, W., Mandelbaum, B., Espregueira-Mendes, J., d'Hooghe, P. (eds) Return to Play in Football. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55713-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55713-6_21

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55712-9

  • Online ISBN: 978-3-662-55713-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics