In Band 3 haben wir freie und erzwungene Schwingungen von mechanischen Systemen mit einem bzw. mit zwei Freiheitsgraden behandelt. Solche Systeme mit endlicher Zahl von Freiheitsgraden nennt man auch diskrete Systeme. Die Beschreibung ihrer Schwingungsbewegung führt auf gewöhnliche Differentialgleichungen. In diesem Kapitel wollen wir nun Schwingungen kontinuierlicher Systeme untersuchen. Hierzu gehören unter anderem die Saite, der Balken und die Platte. Bei ihnen sind die für die Schwingung maßgeblichen physikalischen Größen, wie die Masse und die Steifigkeit, kontinuierlich verteilt. Man kann solche Systeme auch als Systeme mit unendlich vielen Freiheitsgraden auffassen. Ihre Bewegung wird mittels partieller Differentialgleichungen beschrieben. Wir werden zeigen, dass es freien Schwingungen unendlich viele Eigenfrequenzen und zugehörige Schwingungsformen gibt.