Dynamic Logic of Power and Immunity

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10455)


We present a dynamic logic for modelling legal competences, and in particular for the Hohfeldian categories of power and immunity. We argue that this logic improves on existing models by explicitly capturing the norm-changing character of legal competences, while at the same time providing a sophisticated reduction of the latter to static normative positions. The logic is shown to be completely axiomatizable; an analysis of its resulting dynamic normative positions is provided; and it is finally applied to a concrete case in German contract law to illustrate how the logic can distinguish legal ability and legal permissibility.



The research reported in this paper has been supported by the PIOTR project (RO 4548/4-1] of the German Research Foundation (DFG). The first author is supported by the MOE Project of Key Research Institute of Humanities and Social Sciences in Universities [No. 12JJD720005], by the China Scholarship Council grant [CSC No. 201306380078], and by the Chair of Philosophy I, Universität Bayreuth.


  1. 1.
    Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. Log. Found. Game Decis. Theory 3, 9–58 (2008)MathSciNetMATHGoogle Scholar
  2. 2.
    Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge University Press, Chennai (2002)MATHGoogle Scholar
  3. 3.
    Boutilier, C.: Toward a logic for qualitative decision theory. KR 94, 75–86 (1994)Google Scholar
  4. 4.
    Dignum, F., Meyer, J.-J.C., Wieringa, R.: Free choice and contextually permitted actions. Stud. Log. 57(1), 193–220 (1996)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dong, H.: Permission in Non-Monotonic Normative Reasoning. PhD thesis, Universität Bayreuth (2017)Google Scholar
  6. 6.
    Hansson, B.: An analysis of some deontic logics. Nous 33, 373–398 (1969)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hohfeld, W.N.: Some fundamental legal conceptions as applied in judicial reasoning. Yale Law J. 23(1), 16–59 (1913)CrossRefGoogle Scholar
  8. 8.
    Jones, A.J., Sergot, M.: A formal characterisation of institutionalised power. Log. J. IGPL 4(3), 427–443 (1996)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Kanger, S.: Law and logic. Theoria 38(3), 105–132 (1972)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Kanger, S., Kanger, H.: Rights and parliamentarism. Theoria 32(2), 85–115 (1966)CrossRefGoogle Scholar
  11. 11.
    Lindahl, L.: Position and Change: A Study in Law and Logic, vol. 112. Springer Science and Business Media, Dordrecht (1977)CrossRefGoogle Scholar
  12. 12.
    Makinson, D.: On the formal representation of rights relations. J. philos. Log. 15(4), 403–425 (1986)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Meyer, J.-J.C.: A different approach to Deontic Logic: Deontic Logic Viewed as a Variant of Dynamic Logic. Notre Dame J. Formal Log. 29, 109–136 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Sergot, M.: Normative positions. In: Gabbay, D., Horty, J., Parent, X., van der Meyden, R., van der Torre, L. (eds.) Handbook of Deontic Logic and Normative Systems, vol. 1. College Publication, London (2013)Google Scholar
  15. 15.
    Van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-classical log. 17(2), 129–155 (2007)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    van Benthem, J.: Modal Logic for Open Minds. Center for the Study of Language and Information (CSLI), California (2010)Google Scholar
  17. 17.
    van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge University Press, Chennai (2011)CrossRefMATHGoogle Scholar
  18. 18.
    Benthem, J., Grossi, D., Liu, F.: Deontics = Betterness + Priority. In: Governatori, G., Sartor, G. (eds.) DEON 2010. LNCS, vol. 6181, pp. 50–65. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14183-6_6 CrossRefGoogle Scholar
  19. 19.
    van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria 80(2), 116–152 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    van Benthem, J., van Otterloo, S., Roy, O.: Preference logic, conditionals, and solution concepts in games. In: Festschrift for Krister Segerberg (2005)Google Scholar
  21. 21.
    van Ditmarsch, H., Kooi, B.: Semantic results for ontic and epistemic change. Log. Found. Game Decis. Theory 3, 87–117 (2008)MathSciNetMATHGoogle Scholar
  22. 22.
    van Eijck, J., Ruan, J., Sadzik, T.: Action emulation. Synthese 185, 131–151 (2012)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universität BayreuthBayreuthGermany

Personalised recommendations