Conjunction and Disjunction in Infectious Logics

  • Hitoshi Omori
  • Damian Szmuc
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10455)


In this paper we discuss the extent to which conjunction and disjunction can be rightfully regarded as such, in the context of infectious logics. Infectious logics are peculiar many-valued logics whose underlying algebra has an absorbing or infectious element, which is assigned to a compound formula whenever it is assigned to one of its components. To discuss these matters, we review the philosophical motivations for infectious logics due to Bochvar, Halldén, Fitting, Ferguson and Beall, noticing that none of them discusses our main question. This is why we finally turn to the analysis of the truth-conditions for conjunction and disjunction in infectious logics, employing the framework of plurivalent logics, as discussed by Priest. In doing so, we arrive at the interesting conclusion that —in the context of infectious logics— conjunction is conjunction, whereas disjunction is not disjunction.


Conjunction Disjunction Infectious logics Logics of nonsense Plurivalent logics 



We would like to thank the anonymous referees for their helpful (and enthusiastic!) comments that improved our paper. Hitoshi Omori is a Postdoctoral Research Fellow of Japan Society for the Promotion of Science (JSPS). Damian Szmuc is enjoying a PhD fellowship of the National Scientific and Technical Research Council of Argentina (CONICET) and his visits to Kyoto when this collaboration took place were partially supported by JSPS KAKENHI Grant Number JP16H03344.


  1. 1.
    Armour-Garb, B., Priest, G.: Analetheism: a pyrrhic victory. Analysis 65(2), 167–173 (2005)CrossRefzbMATHGoogle Scholar
  2. 2.
    Beall, J.: Off-topic: a new interpretation of weak-kleene logic. Australas. J. Log. 13(6), 136–142 (2016)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Beall, J., Ripley, D.: Analetheism and dialetheism. Analysis 64(1), 30–35 (2004)CrossRefzbMATHGoogle Scholar
  4. 4.
    Belnap, N.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–55. Oriel Press, Newcastle upon Tyne (1977)Google Scholar
  5. 5.
    Bochvar, D.: On a three-valued calculus and its application in the analysis of the paradoxes of the extended functional calculus. Matamaticheskii Sbornik 4, 287–308 (1938)zbMATHGoogle Scholar
  6. 6.
    Brady, R., Routley, R.: Don’t care was made to care. Australas. J. Philos. 51(3), 211–225 (1973)CrossRefGoogle Scholar
  7. 7.
    Daniels, C.: A note on negation. Erkenntnis 32(3), 423–429 (1990)CrossRefGoogle Scholar
  8. 8.
    De, M., Omori, H.: There is more to negation than modality. J. Philos. Log. (2017)Google Scholar
  9. 9.
    Deutsch, H.: Paraconsistent analytic implication. J. Philos. Log. 13(1), 1–11 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dunn, M.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Epstein, R.: The semantic foundations of logic. In: Propositional Logics, 2nd edn., vol. 1. Oxford University Press, New York (1995)Google Scholar
  12. 12.
    Ferguson, T.M.: A computational interpretation of conceptivism. J. Appl. Non Class. Log. 24(4), 333–367 (2014)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Ferguson, T.M.: Logics of nonsense and Parry systems. J. Philos. Log. 44(1), 65–80 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ferguson, T.M.: Faulty Belnap computers and subsystems of FDE. J. Log. Comput. 26(5), 1617–1636 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fitting, M.: Kleene’s three valued logics, their children. Fundamenta Informaticae 20(1, 2, 3), 113–131 (1994)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Fitting, M.: Bilattices are nice things. In: Bolander, T., Hendricks, V., Pedersen, S.A. (eds.) Self-Reference, pp. 53–78. CSLI Publications (2006)Google Scholar
  17. 17.
    Frankowski, S.: Formalization of a plausible inference. Bull. Sect. Log. 33(1), 41–52 (2004)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Halldén, S.: The Logic of Nonsense. Uppsala Universitets Årsskrift (1949)Google Scholar
  19. 19.
    Kleene, S.C.: Introduction to Metamathematics. North-Holland, Amsterdam (1952)zbMATHGoogle Scholar
  20. 20.
    Malinowski, G.: Q-consequence operation. Rep. Math. Log. 24(1), 49–59 (1990)MathSciNetzbMATHGoogle Scholar
  21. 21.
    McCarthy, J.: A basis for a mathematical theory of computation. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 33–70. North-Holland Publishing Company, Amsterdam (1963)CrossRefGoogle Scholar
  22. 22.
    Omori, H.: Halldén’s logic of nonsense and its expansions in view of logics of formal inconsistency. In: Proceedings of DEXA 2016, pp. 129–133. IEEE Computer Society (2016)Google Scholar
  23. 23.
    Paoli, F.: Regressive analytical entailments. Technical report number 33, Konstanzer Berichte zur Logik und Wissenschaftstheorie (1992)Google Scholar
  24. 24.
    Paoli, F.: Tautological entailments and their rivals. In: Béziau, J.Y., Carnielli, W., Gabbay, D. (eds.) Handbook of Paraconsistency, pp. 153–175. College Publications (2007)Google Scholar
  25. 25.
    Parry, W.T.: Ein axiomensystem für eine neue art von implikation (analytische implikation). Ergeb. Eines Math. Kolloqu. 4, 5–6 (1933)zbMATHGoogle Scholar
  26. 26.
    Priest, G.: Hyper-contradictions. Logique et Analyse 27(107), 237–243 (1984)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Priest, G.: An Introduction to Non-classical logic: From If to Is, 2nd edn. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    Priest, G.: The logic of the catuskoti. Comp. Philos. 1(2), 24–54 (2010)Google Scholar
  29. 29.
    Priest, G.: Plurivalent logics. Australas. J. Log. 11(1), 2–13 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Szmuc, D.: An epistemic interpretation of Paraconsistent Weak Kleene. TypescriptGoogle Scholar
  31. 31.
    Szmuc, D.: Defining LFIs and LFUs in extensions of infectious logics. J. Appl. Non Class. Log. 26(4), 286–314 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of PhilosophyKyoto UniversityKyotoJapan
  2. 2.Department of PhilosophyUniversity of Buenos AiresBuenos AiresArgentina
  3. 3.IIF-SADAF, CONICETBuenos AiresArgentina

Personalised recommendations