Skip to main content

Electrochemical Energy Storage Systems

  • Chapter
  • First Online:
Handbook of Energy Storage

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Berndt D (1986) Bleiakkumulatoren, 11th edn. VDI-Verlag, Düsseldorf

    Google Scholar 

  2. Besenhard JO (1999) Handbook of battery materials. Wiley-VCH, Weinheim, New York

    Google Scholar 

  3. Bode H (1977) Lead-acid batteries. A Wiley-Interscience series. Wiley, New York

    Google Scholar 

  4. Bullock KR (1982) Self-Discharge in Acid-Starved Lead-Acid Batteries. J Electrochem Soc 129(7):1393. https://doi.org/10.1149/1.2124172

    Article  Google Scholar 

  5. DIN (1979) DIN 41 772: Halbleiter-Gleichrichtergeräte. Beuth Verlag, Berlin

    Google Scholar 

  6. DIN (2011) DIN EN 50272-2 - Sicherheitsanforderungen an Batterien und Batterieanlagen – Teil 2: Stationäre Batterien; Deutsche Fassung EN 50272-2:2001. Beuth Verlag, Berlin

    Google Scholar 

  7. Dustmann C-H (1991) Zukunftschancen für Hochenergiebatterien. Batterien und Akkumulatoren

    Google Scholar 

  8. Eck G (1990) High temperature storage battery (European Patent 19880117185)

    Google Scholar 

  9. Ellis BL, Lee KT, Nazar LF (2010) Positive Electrode Materials for Li-Ion and Li-Batteries. Chem Mater 22(3):691–714. https://doi.org/10.1021/cm902696j

    Article  Google Scholar 

  10. Engel KM (2005) Natrium-Batterien

    Google Scholar 

  11. Eulitz C-M, Scheuermann S, Thier H-J (1965) Brockhaus ABC Chemie. F.A. Brockhaus, Leipzig

    Google Scholar 

  12. Falk SU, Salkind AJ (1969) Alkaline storage batteries. The Electrochemical Society series. Wiley, New York

    Google Scholar 

  13. Goodenough JB, Kim Y (2010) Challenges for Rechargeable Li Batteries. Chem Mater 22(3):587–603. https://doi.org/10.1021/cm901452z

    Article  Google Scholar 

  14. Hoppecke (2013) Rekombinationssystem für stationäre Batterien. http://www.hoppecke.de/produkte/zubehoer/aquagen_r_premium_top. Accessed 4 Sept 2013 (Hoppecke)

    Google Scholar 

  15. Jossen A, Weydanz W (2006) Moderne Akkumulatoren richtig einsetzen, 1st edn. Ubooks, Neusäß (36 Tabellen)

    Google Scholar 

  16. Kiehne H-A (2003) Batterien. Grundlagen und Theorie, aktueller technischer Stand und Entwicklungstendenzen, 5th edn. Kontakt & Studium, vol 57. Expert, Renningen (mit 51 Tabellen)

    Google Scholar 

  17. Lander JJ (1956) Further Studies on the Anodic Corrosion of Lead in H[sub 2]SO[sub 4] Solutions. J Electrochem Soc 103(1):1. https://doi.org/10.1149/1.2430227

    Article  MathSciNet  Google Scholar 

  18. Linden D (1995) Handbook of batteries, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  19. Lu X, Lemmon JP, Sprenkle V, Yang Z (2010) Sodium-beta alumina batteries: Status and challenges. JOM 62(9):31–36. https://doi.org/10.1007/s11837-010-0132-5

    Article  Google Scholar 

  20. Merck (2009) Produktinformationsbroschüre: Materials for Li-ion batteries and double-layer capacitors. Darmstadt

    Google Scholar 

  21. Moosbauer DJ (2010) Elektrochemische Charakterisierung von Elektrolyten und Elektroden für Lithium-Ionen-Batterien – Entwicklung einer neuen Messmethode für elektrochemische Untersuchungen an Elektroden mit der EQCM. http://epub.uni-regensburg.de/18757/. Accessed 4 Sept 2013 (Dissertation)

    Google Scholar 

  22. NGK (2009) Energy Storage System for Reducing CO2 Emissions. Hannover

    Google Scholar 

  23. NGK (2012) Cause of NAS Battery Fire Incident, afety Enhancement Measures and esumption of Operations. http://www.ngk.co.jp/english/news/2012/0607.html. Accessed 3 Oct 2013 (NGK Insulator, L.T.D)

    Google Scholar 

  24. NGK (2012) NGK Will Implement NAS® Battery Safety Enhancement Measures and Meticulous Quality Assurance in an Effort to Restore Confidence and Expand Business. http://www.ngk.co.jp/english/csr/pdf/csr2012_04.pdf. Accessed 19 Dec 2013 (NGK Insulator, L.T.D)

    Google Scholar 

  25. Noak J (2009) Verbesserte Redox-Flow-Batterien für Elektroautos. http://www.fraunhofer.de/de/presse/presseinformationen/2009/09/redox-flow-batterie-fuer-elektroautos.html. Accessed 3 Oct 2013 (PI 16.09.2009. Fraunhofer-Institut für Chemische Technologie ICT)

    Google Scholar 

  26. Novacheck F, Himelic J (2011) Sodium Sulfur Battery Energy Storage And Its Potential To Enable Further Integration of Wind (Wind-to-Battery Project). CO, Denver

    Google Scholar 

  27. Oertel D (2008) Energiespeicher – Stand und Perspektiven

    Google Scholar 

  28. Park M, Zhang X, Chung M, Less G, Sastry AM (2011) A review of conduction phenomena in Li-ion batteries

    Google Scholar 

  29. Pohl C, Kriebs K (2006) Prüfung von wirtschaftlichen Einsatzmöglichkeiten einer NaS-Batterie

    Google Scholar 

  30. Röhr C (2013) Chemie der Metalle. Oxide und Hydroxide. Universität Freiburg

    Google Scholar 

  31. Ruetschi P (2004) Aging mechanisms and service life of lead–acid batteries. J Power Sources 127(1):33–44. https://doi.org/10.1016/j.jpowsour.2003.09.052

    Article  Google Scholar 

  32. Rüetschi P, Angstadt RT (1958) Self-Discharge Reactions In Lead-Acid Batteries. J Electrochem Soc 105(10):555. https://doi.org/10.1149/1.2428662

    Article  Google Scholar 

  33. Rummich E (2009) Energiespeicher. Grundlagen, Komponenten, Systeme und Anwendungen. expert-Verl, Renningen (mit 22 Tabellen)

    Google Scholar 

  34. Schöpe F, Karden E, Küssel R (1997) Batteriemanagementsysteme für Elektrostraßenfahrzeuge. FAT-Schriftenreihe. Fat Frankfurt/m (132)

    Google Scholar 

  35. Sopicka-Lizer M (2010) High-energy ball milling. Mechanochemical processing of nanopowders. Woodhead Publishing in materials. Woodhead Publishing; CRC Press, Oxford, Boca Raton

    Book  Google Scholar 

  36. Steudel RSY (2013) Polysulfide chemistry in sodium-sulfur batteries and related systems–a computational study by G3X(MP2) and PCM calculations

    Google Scholar 

  37. Tanka K (2013) Recent Sodium Sulfur Battery Applications in Japan. Nagoya

    Google Scholar 

  38. Thaller L (1976) Electrically Rechargeable Redox Flow Cell (US Patent 3996064)

    Google Scholar 

  39. Valoen LO, Reimers J (2005) Transport Properties of LiPF6-Based Li-Ion Battery Electrolytes. Kanada

    Google Scholar 

  40. Whittingham S (2004) Lithium Batteries and Cathode Materials. New York

    Google Scholar 

  41. Xu K (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem Rev (10):4243–4886

    Article  Google Scholar 

  42. Zhang W-J (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. J Power Sources 196(1):13–24. https://doi.org/10.1016/j.jpowsour.2010.07.020

    Article  Google Scholar 

  43. Zimmermann UD (2013) Oxidkeramik – Aluminiumoxid (Al2O3). Der bekannteste oxidkeramische Werkstoff. http://www.ceramtec.de/werkstoffe/aluminiumoxid/. Accessed 2 Oct 2013 (CeramTec GmbH)

    Google Scholar 

  44. ZVEI (2011) Merkblatt des ZVEI Nr. 3. Anforderungen an Elektrolyt und Nachfüllwasser für Bleibatterien

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingo Stadler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Figures for this chapter (ZIP)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stadler, I., Riegel, B., Ohms, D., Cattaneo, E., Langer, G., Herrmann, M. (2019). Electrochemical Energy Storage Systems. In: Sterner, M., Stadler, I. (eds) Handbook of Energy Storage. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55504-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55504-0_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55503-3

  • Online ISBN: 978-3-662-55504-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics