Skip to main content

Part of the book series: WissenKompakt Medizin ((WISSKOMED))

  • 1577 Accesses

Zusammenfassung

Unter dem Begriff der roboterassistierten Chirurgie versteht man den Einsatz von Operationsrobotern bei operativen Eingriffen. Die Entwicklung begann schon vor Jahrzehnten und zog nach und nach in den klinischen Alltag ein. Heute ist die roboterassistierte Chirurgie eine Standardprozedur und aus dem klinischen Alltag nicht mehr wegzudenken. Der Ursprung des Wortes Roboter ist das tschechische Wort „robota“ und bedeutet übersetzt „arbeiten“. In der Urologie finden als minimalinvasive Eingriffe die Endoskopie und die Schlüssellochtechnik, die Laparoskopie, einen breiten Einsatz. Besondere Bedeutung hat hierbei der Da-Vinci-Operationsroboter als Alternative zur klassischen Laparoskopie. Dieses Kapitel soll einen Überblick über die Technik des Da-Vinci-Systems, seine Vorteile und sein Einsatzspektrum in der Urologie geben. So wird insbesondere im weiteren Verlauf auf die operative Entfernung der Prostata, die Prostatektomie, die Nierentumorchirurgie und die rekonstruktive Chirurgie eingegangen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 17.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Akand M, Celik O (2015) Open, laparoscopic and robot-assisted laparoscopic radical prostatectomy: comparative analysis of operative and pathologic outcomes for three techniques with a single surgeon’s experience. Eur Rev Med Pharmacol Sci 19:525–531

    Google Scholar 

  2. Akçetin Z, Siemer S (2012) Nierenbeckenplastik – pro robotisch. Urologe 51(5):640–644

    Article  Google Scholar 

  3. Barbash GI, Glied SA (2010) New technology and health care costs – the case of robot-assisted surgery. N Engl J Med 363:701–704

    Article  Google Scholar 

  4. Binder J, Bräutigam R, Jonas D, Bentas W (2004) Robotic surgery in urology: fact or fantasy? BJU Int 94(8):1183–1206

    Article  Google Scholar 

  5. Borofsky MS et al (2013) Near-infrared fluorescence imaging to facilitate super-selective arterial clamping during zero-ischaemia robotic partial nephrectomy. BJU Int 111:604–610

    Article  Google Scholar 

  6. Braga LHP, Pace K et al (2009) Systematic review and meta-analysis of robotic-assisted versus conventional laparoscopic pyeloplasty for patients with ureteropelvic junction obstruction: effect on operative time, length of hospital stay, postoperative complications, and success rate. Eur Urol 56:848–858

    Article  Google Scholar 

  7. Buchs NC, Pugin F et al (2013) Learning tools and simulation in robotic surgery: state of the art. World J Surg 37:2812–2819

    Article  Google Scholar 

  8. Chauhan S, Coelho RF et al (2010) Techniques of nerve-sparing and potency outcomes following robot-assisted laparoscopic prostatectomy. Int Braz J Urol 36(3):259–272

    Article  Google Scholar 

  9. Coelho RF, Palmer KJ et al (2010) Early complication rates in a sigle-surgeon series of 2500 robotic-assisted radical prostatectomies: report applying a standardized grading system. Eur Urol 57(6):945–952

    Article  Google Scholar 

  10. Davis BL, Hibberd RD et al (1989) A surgeon robot prostatectomy – a laboratory evaluation. J Med Eng Technol 13(6):273–277

    Article  Google Scholar 

  11. Desai MM, de Castro AA et al (2014) Robotic partial nephrectomy with superselective versus main artery clamping: a retrospective comparison. Eur Urol 66(4):713–719

    Article  Google Scholar 

  12. Eastham JA, Scardino PT et al (2008) Predicting an optimal outcome after radical prostatectomy: the trifecta nomogram. J Urol 179(6):2207–2210

    Article  Google Scholar 

  13. Elliott DS, Krambeck AE et al (2006) Long-term results of robotic assisted laparoscopic sacrocolpopexy for the treatment of high grade vaginal vault prolapsed. J Urol 176(2):655–659

    Article  Google Scholar 

  14. Fernandez E, Elli E et al (2014) The role of the dual console in robotic surgical training. Surgery 155(1):1–4

    Article  Google Scholar 

  15. Ficarra V, Minervini A et al (2014) A multicentre matched pair-analysis comparing robot-assisted versus open partial nephrectomy. BJU Int 113(6):936–941

    Article  Google Scholar 

  16. Geller EJ, Siddiqui NY et al (2008) Short-term outcomes of robotic sacrocolpopexy. Obstet Gynecol 112(6):1201–1206

    Article  Google Scholar 

  17. Gettman MT, Blute ML et al (2004) Robotic-assisted laparoscopic partial nephrectomy: technique and initial clinical experience with DaVinci robotic system. Urology 64(5):914–918

    Article  Google Scholar 

  18. Giannakis D, Tsalikis D et al (2004) Ureteropelvic stenosis, agenesia of the contralateral kidney and sinistral inferior vena cava. Aktuelle Urol 35(3):233–235

    Article  Google Scholar 

  19. Hendrix SL, Clark A et al (2002) Pelvic organ prolapse in the women’s health initiative: gravity and gravidity. Am J Obstet Gynecol 186(6):1160–1166

    Article  Google Scholar 

  20. Hemal AK, Kumar A et al (2007) Laparoscopic versus open radical nephrectomy for large renal tumors: a long-term prospective comparison. J Urol 177(3):862–866

    Article  Google Scholar 

  21. Intuitive Surgical (2016) http://www.intuitivesurgical.com/products/. Zugegriffen: 03. Apr. 2016

  22. Janetschek G, Kriegmair M et al (2014) Ureterabgangsstenose des Erwachsenen. Die Urologie. http://link.springer.com/referenceworkentry/10.1007/978-3-642-41168-7_68-1. Zugegriffen: 06. Apr. 2016

  23. Kavoussi LR, Moore RG et al (1995) Comparison of robotic versus human laparoscopic camera control. J Urol 154(6):2134–2136

    Article  Google Scholar 

  24. Kundu SD, Roehl KA et al (2004) Potency, continence and complications in 3,477 consecutive radical retropubic prostatectomies. J Urol 172(6):2227–2231

    Article  Google Scholar 

  25. Leitlinienprogramm Onkologie (2015) S3-Leitlinie Diagnostik, Therapie und Nachsorge des Nierenzellkarzinoms. http://leitlinienprogramm-onkologie.de/uploads/tx_sbdownloader/LL_Nierenzell_Kurzversion.pdf. Zugegriffen: 19. Marz. 2016

  26. Lucas SM, Sundaram CP et al (2012) Factors that impact the outcome of minimally invasive pyeloplasty: results of the Multi-institutional Laparoscopic and Robotic Pyeloplasty Collaborative Group. J Urol 187(2):522–527

    Article  Google Scholar 

  27. Marescaux J, Leroy J et al (2001) Transatlantic robot-assisted telesurgery. Nature 413(6854):379–380

    Article  Google Scholar 

  28. Mottrie A, De Naeyer G et al (2010) Impact of the learning curve on perioperative outcomes in patients who underwent robotic partial nephrectomy for parenchymal renal tumours. Eur Urol 58(1):127–132

    Article  Google Scholar 

  29. Nedas TG, Challacombe BJ et al (2005) Robotics in urology: an update. Int J Med Robot 1(2):13–18

    Article  Google Scholar 

  30. Orvieto MA, Alsikafi NF et al (2006) Impact of surgical margin status on long-term cancer control after radical prostatectomy. BJU Int 98(6):1199–1203

    Article  Google Scholar 

  31. Patel VR, Coehlo RF (2009) Periurethral suspension stitch during robot-assisted laparoscopic radical prostatectomy: description of the technique and continence outcomes. Eur Urol 56(3):4724–4778

    Article  Google Scholar 

  32. Patel VR, Sivaramanm A et al (2011) Pentafecta: a new concept for reporting outcomes of robot-assisted laparoscopic radical prostatectomy. Eur Urol 59(5):702–707

    Article  Google Scholar 

  33. Robert-Koch-Institut (2013) Krebs in Deutschland 2009/2010. Häufigkeiten und Trends. Robert-Koch-Institut (Hrsg), Berlin. http://www.rki.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2013/kid_2013_c61_prostata.pdf. Zugegriffen: 24. Mai. 2017

  34. Robertson C, Close A et al (2013) Relative effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of localised prostate cancer: a systematic review and mixed treatment comparison meta-analysis. BJU Int 112(6):798–812

    Article  Google Scholar 

  35. Simone G, Gill IS et al (2015) Indications, techniques, outcomes, and limitations for minimally ischemic and off-clamp partial nephrectomy: a systematic review of the literature. Eur Urol 68(4):632–640

    Article  Google Scholar 

  36. Swindle P, Eastham JA et al (2005) Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 174(3):903–907

    Article  Google Scholar 

  37. Tabayoyong W, Abouassaly R et al (2015) Variation in surgical margin status by surgical approach among patients undergoing partial nephrectomy for small renal masses. J Urol 194:1548–1553

    Article  Google Scholar 

  38. Tewari A, Sooriakumaran P et al (2012) Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubiclaparoscopic, and robotic prostatectomy. Eur Urol 62(1):1–15

    Article  Google Scholar 

  39. Thiel DD, Winfield HN (2008) Robotics in urology: past, present, and future. J Endourol 22(4):825–830

    Article  Google Scholar 

  40. Tobis S, Knopf J et al (2011) Near infrared fluorescence imaging with robotic assisted laparoscopic partial nephrectomy: initial clinical experience for renal cortical tumors. J Urol 186(1):47–52

    Article  Google Scholar 

  41. Wallis CJ, Saskin R et al (2016) Surgery versus radiotherapy for clinically-localized prostate cancer: a systematic review and meta-analysis. Eur Urol 70(1):21–30

    Article  Google Scholar 

  42. Walsh PC, Lepor H et al (1983) Radical prostatectomy with preservation of sexual function: anatomical and pathological considerations. Prostate 4(5):473–485

    Article  Google Scholar 

  43. Winfield HN (2006) Management of adult ureteropelvic junction obstruction – is it time for a new gold standard? J Urol 176(3):866–867

    Article  Google Scholar 

  44. Wu Z, Li M et al (2014) Robotic versus open partial neprectomy: a systematic review and meta-analysis. PLoS One 9(4):e94878

    Article  Google Scholar 

  45. Wright JL, Dalkin BL et al (2010) Positive surgical margins at radical prostatectomy predict prostata cancer specific mortality. J Urol 183(6):2213–2218

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrin Arden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Arden, C., Nyarangi-Dix, J., Hatiboglu, G. (2018). Robotik. In: Kesch, C., Hohenfellner, M. (eds) Aktuelles aus Klinik und Praxis der Urologie. WissenKompakt Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55473-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55473-9_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55472-2

  • Online ISBN: 978-3-662-55473-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics