Guide for Pragmatical Modelling of Ontologies in Corporate Settings

  • Thomas Hoppe
  • Robert Tolksdorf


The application of semantic technologies in a corporation sometimes requires modelling specialized ontologies under the requirements imposed by the corporate setting. Often a proof of concept needs to show the usefulness of a semantic application first, before additional investments will be made into the technology. Therefore, an initial ontology needs to be developed quickly with limited resources to demonstrate the usefulness of a semantic application. This chapter describes a practical and pragmatical approach for resource-limited modelling of ontologies. Guided by rules, this modelling approach starts with the modelling of a thesaurus which later can be extended to a full-fledged ontology. The initial step of modelling a thesaurus, allows for the development of a proof of concept first and to put the semantic application into productive use early, in order to acquire additional insights and information about its usage.


  1. 1.
    Hoppe T (2013) Semantische Filterung – Ein Werkzeug zur Steigerung der Effizienz im Wissensmanagement. Open Journal of Knowledge Management VII/2013, online under: Community of Knowledge. Last access 2 Nov 2017
  2. 2.
    Robinson PN, Schulz MH, Bauer S, Köhler S. Methods for searching with semantic similarity scores in one or more ontologies. US Patent US 2011/0040766 A1, filed 13 Aug 2009, published 17 Feb 2011Google Scholar
  3. 3.
    Schulz MH, Bauer S, Köhler S, Robinson PN (2011) Exact score distribution computation for ontological similarity searches. BMC Bioinformatics 12:441. Last access 2 Nov 2017CrossRefGoogle Scholar
  4. 4.
    Hoppe T (2015) Modellierung des Sprachraums von Unternehmen. In: Ege B, Humm B, Reibold A (eds) Corporate Semantic Web – Wie semantische Anwendungen in Unternehmen Nutzen stiften. Springer, BerlinGoogle Scholar
  5. 5.
    Luczak-Rösch M, Heese R (2009) Managing ontology lifecycles in corporate settings. In: Schaffert S et al (eds) Networked knowledge – networked media, SCI 221. Springer, Heidelberg, pp 235–248CrossRefGoogle Scholar
  6. 6.
    Gruber TR (1993) A translation approach to portable ontologies. Knowledge Acquisition 5(2):199–220. Academic PressCrossRefGoogle Scholar
  7. 7.
    Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering: principles and methods. Data and Knowledge Engineering 25:161–197CrossRefGoogle Scholar
  8. 8.
    Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (2003) The description logic handbook. Cambridge University Press, CambridgezbMATHGoogle Scholar
  9. 9.
    W3C. SKOS Simple Knowledge Organization System. Last access 2 Nov 2017
  10. 10.
    W3C. OWL 2 Web Ontology Language document overview, 2nd edn. Last access 2 Nov 2017
  11. 11.
    Protégé. A free, open-source ontology editor and framework for building intelligent systems. Last access 2 Nov 2017
  12. 12.
    Horridge M, Drummond N, Goodwin J, Rector A, Stevens R, Wang HH. The Manchester OWL syntax. Last access 2 Nov 2017
  13. 13.
    Herre H, Uciteli A (2015) Ontologien für klinische Studien. In: Ege B, Humm B, Reibold A (eds) Corporate Semantic Web – Wie semantische Anwendungen in Unternehmen Nutzen stiften. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Datenlabor BerlinBerlinGermany
  2. 2.BerlinGermany

Personalised recommendations