Knowledge-Based Production Planning for Industry 4.0

  • Benjamin Gernhardt
  • Tobias Vogel
  • Matthias Hemmje


Today and tomorrow – in the era of Digital Production Environments and Industry 4.0 – the production planning and manufacturing of a new product takes place in various partial steps, mostly in different locations, potentially distributed all over the world. In this application context, a Collaborative Adaptive Production Process Planning can be supported by semantic product data management approaches enabling production-knowledge representation and management as well as knowledge sharing, access, and reuse in a flexible and efficient way. To support such scenarios, semantic representations of production-knowledge integrated into a machine-readable process formalization is a key enabling factor for sharing such explicit knowledge resources in cloud-based knowledge repositories. We will introduce such a method and provide a corresponding prototypical Proof-of-Concept implementation called Knowledge-Based Production Planning (KPP).

Furthermore, the ProSTEP iViP Association recently published a White Paper entitled “Modern Production Planning Processes” that is based on the currently emerging ISO/DIS 18828-2 Standard. This recommendation represents a formal end-to-end reference process that can be adapted to individual needs, the so-called Reference Planning Process (RPP).

In this chapter, we will explain KPP in detail. Further, as a basis for evaluation and validation, we use the KPP approach as a possible reference implementation of RPP. We will also demonstrate the usability and interoperability of the Proof-of-Concept implementation of KPP. This includes an integrated visually direct manipulative process editor. Moreover, we will illustrate the first prototype of the KPP Mediator Architecture including a user-friendly query library based on the KPP ontology.


  1. 1.
    Wiederhold G (1992) Mediators in the Architecture of Future Information Systems. The IEEE Computer Magazine, 25(3):38–49CrossRefGoogle Scholar
  2. 2.
    Miltner F, Vogel T, Hemmje M (2014) Towards knowledge based process planning support for CAPP-4-SMEs: problem description, relevant state of the art and proposed approach ASME 2014 International Manufacturing Science and Engineering Conference (MSEC) Research Conference, Vol. 1 - Detroit, Michigan, USA, June 9–13, 2014Google Scholar
  3. 3.
    Wang L, Feng HY, Cai N (2003) Architecture design for distributed process planning. J Manuf Syst 22:99–115CrossRefGoogle Scholar
  4. 4.
    International Organization for Standardization (2011) ISO International Standard 10303-210:2011 Industrial automation systems and integration – product data representation and exchange – part 210: application protocol: electronic assembly, interconnected and packaging design. 2011, Geneva, SwitzerlandGoogle Scholar
  5. 5.
    Vogel T (2012) Wissensbasiertes und Prozessorientiertes Innovationsmanagement WPIM – Innovationsszenarien, Anforderungen, Modell und Methode, Implementierung und Evaluierung anhand der Innovationsfähigkeit fertigender Unternehmen, Dissertation, HagenGoogle Scholar
  6. 6.
    Wang L, Adamson G, Holm M, Moore P (2012) A review of function blocks for process planning and control of manufacturing equipment. J Manuf Syst 31(3):269–279CrossRefGoogle Scholar
  7. 7.
    Wang L, Jin W, Feng HY (2006) Embedding machining features in function blocks for distributed process planning. Int J Comput Integr Manuf 19:443–452CrossRefGoogle Scholar
  8. 8.
    International Organization for Standardization (2016) ISO International Standard 18828-2:2016 Industrial automation systems and integration – standardized procedures for production systems engineering – part 2: reference process for seamless production planning. 2016, Geneva, SwitzerlandGoogle Scholar
  9. 9.
    ProSTEP iViP Association e.V.
  10. 10.
    Recommendation – Reference process for production planning PSI8, ProSTEP iVIP, March 2013.
  11. 11.
    Gernhardt B, Vogel T, Givehchi M, Wang L, Hemmje M (2015) Supporting production planning through semantic mediation of processing functionality, vol 1. International Conference on Innovative Design and Manufacturing (ICIDM), AucklandGoogle Scholar
  12. 12.
    International Electrotechnical Commission (2005) IEC 61499-1 Function blocks – part 1: architecture. 2005, Geneva, SwitzerlandGoogle Scholar
  13. 13.
    Lewis R (2001) Modelling control systems using IEC 61499 – applying function blocks to distributed systems. The Institution of Electrical Engineers, London. ISBN: 0852976 796CrossRefGoogle Scholar
  14. 14.
    International Electrotechnical Commission (2003) IEC 61131-3 Programmable controllers – part 3: programming languages. 2003 Geneva, SwitzerlandGoogle Scholar
  15. 15.
    Vogel T, Hemmje M (2006) Auf dem Weg zu einem Wissens-basierten und Prozess-orientierten Innovationsmanagement (WPIM) – Innovationsszenarien, Anforderungen und Modellbildung. In: KnowTech 2006. CMP-WEKA-Verlag, PoingGoogle Scholar
  16. 16.
    Cyganiak R, Wood D, Lanthaler M, Klyne G, Carroll J, McBride B (2014) RDF 1.1 concepts and abstract syntax. W3C Recommendation 25 February 2014, World Wide Web Consortium (W3C). Last accessed 13 Nov 2014
  17. 17.
    SPARQL Query Language for RDF (2008) World Wide Web Consortium (W3C), 15 January 2008. Last accessed 2 Nov 2016Google Scholar
  18. 18.
    W3C OWL Working Group (2012) OWL 2 web ontology language document overview, 2nd edn. W3C Recommendation 11 December 2012, World Wide Web Consortium (W3C). Last accessed 13 Nov 2014
  19. 19.
    W3C (2004) OWL web ontology language overview. World Wide Web Consortium, 10 February 2004. [Online]. Accessed 14 Nov 2013
  20. 20.
    Ludäscher B, Lin K, Brodaric B, Baru C (2003) GEON: toward a cyberinfrastructure for the geosciences – a prototype for geologic map integration via domain ontologies. In: Digital mapping techniques ‘03 – workshop proceedings, U.S. Geological Survey open-file report 03–471Google Scholar
  21. 21.
    Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2008) Extensible markup language (XML) 1.0, 5th edn. W3C Recommendation 26 November 2008, World Wide Web Consortium (W3C).
  22. 22.
    Melton J (2011) ISO/IEC FDIS 9075-1 Information technology – database languages – SQL – part 1: framework (SQL/Framework), ISO Draft International Standard, ISO/IEC JTC 1/SC 32 Data management and interchange. Last accessed 13 Nov 2014
  23. 23.
    Robie J, Chamberlin D, Dyck M Snelson J (2014) XQuery 3.0: an XML query language. W3C Recommendation 08 April 2014, World Wide Web Consortium (W3C).
  24. 24.
    Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fokoue A, Lutz C (2012) OWL 2 web ontology language profiles, 2nd edn. W3C Recommendation 11 December 2012, World Wide Web Consortium (W3C). Last accessed 13 Nov 2014
  25. 25.
    Lu Y, Xu X (2015) Process and production planning in a cloud manufacturing environment. ASME 2015 International Manufacturing Science and Engineering Conference, Charlotte. MSEC2015-9382CrossRefGoogle Scholar
  26. 26.
    Givehchi M, Schmidth B, Wang L (2013) Knowledge-based operation planning and machine control by function blocks in Web-DPP. Flexible Automation and Intelligent Manufacturing (FAIM), PortoCrossRefGoogle Scholar
  27. 27.
    Binh Vu D (2015) Realizing an applied gaming ecosystem – extending an education portal suite towards an ecosystem portal. Master thesis, Technische Universität Darmstadt, DarmstadtGoogle Scholar
  28. 28.
    Givehchi M, Haghighi A, Wang L (2015) Paper: Generic machining process sequencing through a revised enriched machining feature concept. Journal of Manufacturing Systems, Vol. 37, Part 2, October 2015, Pages 564-575CrossRefGoogle Scholar
  29. 29.
    Fielding RT (2000) Architectural Styles and the Design of Network-based Software Architectures, University of California, Irvine, CA, USAGoogle Scholar
  30. 30.
    Kossick J (2016) Reimplementierung, Erweiterung und exemplarische Evaluation einer verteilten und kollaborativen Unterstützung für die Produktionsplanung – Translation – Reimplementation, expansion and evaluation of a distributed and collaborative support for a production planning. Bachelor thesis, University of Hagen, HagenGoogle Scholar
  31. 31.
    Prud’hommeaux E (2004) Optimal RDF access to relational databases. W3C. Last accessed 29 Oct 2016
  32. 32.
    Visual Paradigm. Business process model and notation – diagram & tools. Hong Kong. Last accessed 18 Oct 2016
  33. 33.
    Object Management Group (ed) (2015) OMG Unified Modeling Language (OMG UML) Version 2.5. OMG. Last accessed 27 Oct 2016
  34. 34.
    camunda Services GmbH (2013), BPMN-JS - a web-based toolkit for BPMN modeling. Est. 2013, Berlin, Germany. Last accessed 17 Mar 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin Gernhardt
    • 1
  • Tobias Vogel
    • 1
  • Matthias Hemmje
    • 1
  1. 1.University of HagenHagenGermany

Personalised recommendations