Applications of Temporal Conceptual Semantic Systems

Chapter

Abstract

The challenging problem of describing and understanding multidimensional temporal data in practice can often be solved by employing Formal Concept Analysis (FCA) and its temporal extension, Temporal Concept Analysis (TCA). These mathematical theories are based on a formal representation of the philosophical notion of concept. Using concept lattices constructed from (temporal) data a general notion of a state of a temporal object is introduced. This notion is granularity dependent such that factorisations of temporal systems with their state spaces and trajectories of temporal objects can be generated easily. This is demonstrated by an example in the chemical industry where the behavior of a distillation column is made semantically understandable by graphically representing seven variables simultaneously.

References

  1. 1.
    Barbut M, Monjardet B (1970) Ordre et classification. Algèbre et Combinatoire. 2 tomes. Hachette, ParisMATHGoogle Scholar
  2. 2.
    Becker P, Hereth Correia J (2005) The ToscanaJ suite for implementing conceptual information systems. In: Ganter B, Stumme G, Wille R (eds) Formal concept analysis. LNAI 3626. Springer, Heidelberg, pp 324–348CrossRefGoogle Scholar
  3. 3.
    Birkhoff G (1967) Lattice theory, 3rd edn. American Mathematical Society, ProvidenceMATHGoogle Scholar
  4. 4.
    Elzinga P, Wolff KE, Poelmans J, Dedene G, Viaene S (2012) Analyzing chat conversations of pedophiles with temporal relational semantic systems. In: Domenach F, Ignatov D, Poelmans J (eds) Formal concept analysis. Contributions to the 10th international conference on formal concept analysis (ICFCA 2012). Leuven, Belgium, pp 82–101Google Scholar
  5. 5.
    Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Heidelberg. German version: Springer, Heidelberg (1996)CrossRefGoogle Scholar
  6. 6.
    Wille R (1982) Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I (ed) Ordered sets. Reidel, Dordrecht/Boston, pp 445–470. Reprinted in: Ferré S, Rudolph S (eds) Formal concept analysis. ICFCA 2009. LNAI 5548. Springer, Heidelberg, pp 314–339 (2009)CrossRefGoogle Scholar
  7. 7.
    Wolff KE (2004) ‘Particles’ and ‘waves’ as understood by temporal concept analysis. In: Wolff KE, Pfeiffer HD, Delugach HS (eds) Conceptual structures at work. LNAI 3127. Springer, Heidelberg, pp 126–141CrossRefGoogle Scholar
  8. 8.
    Wolff KE (2005) States, transitions, and life tracks in temporal concept analysis. In: Ganter B, Stumme G, Wille R (eds) Formal concept analysis – state of the art. LNAI 3626. Springer, Heidelberg, pp 127–148Google Scholar
  9. 9.
    Wolff KE (2007) Basic notions in temporal conceptual semantic systems. In: Gély A, Kuznetsov SO, Nourine L, Schmidt SE (eds) Contributions to ICFCA 2007, Clermont-Ferrand, Laboratoire LIMOS, Université Blaise Pascal, Aubière CEDEX, pp 97–120Google Scholar
  10. 10.
    Wolff KE (2010) Temporal relational semantic systems. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from information to intelligence. ICCS 2010. LNAI 6208. Springer, Heidelberg, pp 165–180CrossRefGoogle Scholar
  11. 11.
    Wolff KE (2011) Applications of temporal conceptual semantic systems. In: Wolff KE et al (eds) Knowledge processing and data analysis. LNAI 6581. Springer, Heidelberg, pp 59–78CrossRefGoogle Scholar
  12. 12.
    Wollbold J, Wolff KE, Huber R, Kinne R (2011) Conceptual representation of Gene expression processes. In: Wolff KE et al (eds) Knowledge processing and data analysis. LNAI 6581. Springer, Heidelberg, pp 79–100CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hochschule DarmstadtDarmstadtGermany

Personalised recommendations