Proof Theory and Ordered Groups

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10388)


Ordering theorems, characterizing when partial orders of a group extend to total orders, are used to generate hypersequent calculi for varieties of lattice-ordered groups (\(\ell \)-groups). These calculi are then used to provide new proofs of theorems arising in the theory of ordered groups. More precisely: an analytic calculus for abelian \(\ell \)-groups is generated using an ordering theorem for abelian groups; a calculus is generated for \(\ell \)-groups and new decidability proofs are obtained for the equational theory of this variety and extending finite subsets of free groups to right orders; and a calculus for representable \(\ell \)-groups is generated and a new proof is obtained that free groups are orderable.


  1. 1.
    Anderson, M.E., Feil, T.H.: Lattice-Ordered Groups: An Introduction. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
  2. 2.
    Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Heidelberg (1981)CrossRefzbMATHGoogle Scholar
  3. 3.
    Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural logics: cut-elimination and completions. Ann. Pure Appl. Logic 163(3), 266–290 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory: hypersequents and hypercompletions. Ann. Pure Appl. Logic 168(3), 693–737 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-valued reasoning. Kluwer, Berlin (1999)zbMATHGoogle Scholar
  6. 6.
    Clay, A., Smith, L.H.: Corrigendum to [19]. J. Symb. Comput. 44(10), 1529–1532 (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton University, Press (1963)CrossRefzbMATHGoogle Scholar
  8. 8.
    Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963)zbMATHGoogle Scholar
  9. 9.
    Galatos, N., Metcalfe, G.: Proof theory for lattice-ordered groups. Ann. Pure Appl. Logic 8(167), 707–724 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Holland, W.C.: The lattice-ordered group of automorphisms of an ordered set. Mich. Math. J. 10, 399–408 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Holland, W.C.: The largest proper variety of lattice-ordered groups. Proc. Am. Math. Soc. 57, 25–28 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Holland, W.C., McCleary, S.H.: Solvability of the word problem in free lattice-ordered groups. Houston J. Math. 5(1), 99–105 (1979)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jipsen, P., Montagna, F.: Embedding theorems for classes of GBL-algebras. J. Pure Appl. Algebra 214(9), 1559–1575 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kopytov, V.M., Medvedev, N.Y.: The Theory of Lattice-Ordered Groups. Kluwer, Alphen aan den Rijn (1994)CrossRefzbMATHGoogle Scholar
  15. 15.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Trans. Comput. Log. 6(3), 578–613 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  17. 17.
    Montagna, F., Tsinakis, C.: Ordered groups with a conucleus. J. Pure Appl. Algebra 214(1), 71–88 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Neumann, B.H.: On ordered groups. Am. J. Math. 71(1), 1–18 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Smith, L.H.: On ordering free groups. J. Symb. Comput. 40(6), 1285–1290 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Terui, K.: Which structural rules admit cut elimination? – An algebraic criterion. J. Symbolic Logic 72(3), 738–754 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Weinberg, E.C.: Free abelian lattice-ordered groups. Math. Ann. 151, 187–199 (1963)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of BernBernSwitzerland

Personalised recommendations