Proof Theory and Ordered Groups
Conference paper
First Online:
- 1 Citations
- 373 Downloads
Abstract
Ordering theorems, characterizing when partial orders of a group extend to total orders, are used to generate hypersequent calculi for varieties of lattice-ordered groups (\(\ell \)-groups). These calculi are then used to provide new proofs of theorems arising in the theory of ordered groups. More precisely: an analytic calculus for abelian \(\ell \)-groups is generated using an ordering theorem for abelian groups; a calculus is generated for \(\ell \)-groups and new decidability proofs are obtained for the equational theory of this variety and extending finite subsets of free groups to right orders; and a calculus for representable \(\ell \)-groups is generated and a new proof is obtained that free groups are orderable.
References
- 1.Anderson, M.E., Feil, T.H.: Lattice-Ordered Groups: An Introduction. Springer, Heidelberg (1988)CrossRefzbMATHGoogle Scholar
- 2.Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Springer, Heidelberg (1981)CrossRefzbMATHGoogle Scholar
- 3.Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory for substructural logics: cut-elimination and completions. Ann. Pure Appl. Logic 163(3), 266–290 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Ciabattoni, A., Galatos, N., Terui, K.: Algebraic proof theory: hypersequents and hypercompletions. Ann. Pure Appl. Logic 168(3), 693–737 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic foundations of many-valued reasoning. Kluwer, Berlin (1999)zbMATHGoogle Scholar
- 6.Clay, A., Smith, L.H.: Corrigendum to [19]. J. Symb. Comput. 44(10), 1529–1532 (2009)CrossRefzbMATHGoogle Scholar
- 7.Dantzig, G.B.: Linear Programming and Extensions. Princeton University, Press (1963)CrossRefzbMATHGoogle Scholar
- 8.Fuchs, L.: Partially Ordered Algebraic Systems. Pergamon Press, Oxford (1963)zbMATHGoogle Scholar
- 9.Galatos, N., Metcalfe, G.: Proof theory for lattice-ordered groups. Ann. Pure Appl. Logic 8(167), 707–724 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Holland, W.C.: The lattice-ordered group of automorphisms of an ordered set. Mich. Math. J. 10, 399–408 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Holland, W.C.: The largest proper variety of lattice-ordered groups. Proc. Am. Math. Soc. 57, 25–28 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Holland, W.C., McCleary, S.H.: Solvability of the word problem in free lattice-ordered groups. Houston J. Math. 5(1), 99–105 (1979)MathSciNetzbMATHGoogle Scholar
- 13.Jipsen, P., Montagna, F.: Embedding theorems for classes of GBL-algebras. J. Pure Appl. Algebra 214(9), 1559–1575 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Kopytov, V.M., Medvedev, N.Y.: The Theory of Lattice-Ordered Groups. Kluwer, Alphen aan den Rijn (1994)CrossRefzbMATHGoogle Scholar
- 15.Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and hypersequent calculi for abelian and Łukasiewicz logics. ACM Trans. Comput. Log. 6(3), 578–613 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Metcalfe, G., Olivetti, N., Gabbay, D.: Proof Theory for Fuzzy Logics. Springer, Heidelberg (2008)zbMATHGoogle Scholar
- 17.Montagna, F., Tsinakis, C.: Ordered groups with a conucleus. J. Pure Appl. Algebra 214(1), 71–88 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Neumann, B.H.: On ordered groups. Am. J. Math. 71(1), 1–18 (1949)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Smith, L.H.: On ordering free groups. J. Symb. Comput. 40(6), 1285–1290 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Terui, K.: Which structural rules admit cut elimination? – An algebraic criterion. J. Symbolic Logic 72(3), 738–754 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Weinberg, E.C.: Free abelian lattice-ordered groups. Math. Ann. 151, 187–199 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Springer-Verlag GmbH Germany 2017