Advertisement

Metaepidemiologie und Qualitätssicherung klinischer Evidenzproduktion

  • Robin Haring
Chapter

Zusammenfassung

Randomisierte kontrollierte Studien und deren Ergebniszusammenfassung durch systematische Übersichtsarbeiten und Metaanalysen gelten innerhalb des Paradigmas der evidenzbasierten Medizin als Goldstandard zum Wirksamkeitsnachweis klinischer sowie therapeutischer Interventionen. Parallel zum exponentiellen Anstieg publizierter Ergebniszusammenfassungen hat sich auch die Metaanalyse von einer statistischen Technik zu einer Forschungsperspektive weiterentwickelt. Die Notwendigkeit dieser Meta-Forschung ergibt sich aus dem direkten Zusammenhang zwischen der klinischen Relevanz der Ergebnissynthese und der Qualität der darin eingeschlossenen Studien. Das neue Wissenschaftsfeld der Metaepidemiologie stellt quantitative Methoden zur Analyse qualitativer Defizite medizinischer Forschung bereit. Bisherige empirische Ergebnisse metaepidemiologischer Studien deuten eine erhebliche Verzerrung klinischer Evidenz durch methodische Defizite der zugrunde liegenden Einzelstudien an. Der vorliegende Beitrag identifiziert bisher bekannte Meta-Confounder, erläutert die Richtung und das Ausmaß der resultierenden Verzerrung des Behandlungseffekts, thematisiert verschiedene Initiativen und Lösungsansätze zur Qualitätssicherung klinischer Evidenzproduktion und diskutiert abschließend forschungspraktische Implikationen zur Evidenzbasierung der Gesundheitsberufe.

Literatur

  1. Allen D, Harkins K (2005) Too much guidance? Lancet 365: 1768CrossRefPubMedGoogle Scholar
  2. Anglemyer A, Horvath HT, Bero L (2014) Healthcare outcomes assessed with observational study designs compared with those assessed in randomized trials. Cochrane Database Syst Rev 4: MR000034Google Scholar
  3. Armijo-Olivo S, Fuentes J, Rogers T, Hartling L, Saltaji H, Cummings GG (2013). How should we evaluate the risk of bias of physical therapy trials?: a psychometric and meta-epidemiological approach towards developing guidelines for the design, conduct, and reporting of RCTs in Physical Therapy (PT) area: a study protocol. Syst Rev 2: 88CrossRefPubMedPubMedCentralGoogle Scholar
  4. Armijo-Olivo S, Cummings GG, Fuentes J, Saltaji H, Ha C, Chisholm A, Pasichnyk D, Rogers T (2014) Identifying items to assess methodological quality in physical therapy trials: a factor analysis. Phys Ther 4: 1272–1284CrossRefGoogle Scholar
  5. Armijo-Olivo S, Saltaji H, da Costa BR, Fuentes J, Ha C, Cummings GG (2015). What is the influence of randomisation sequence generation and allocation concealment on treatment effects of physical therapy trials? A meta-epidemiological study. BMJ Open (9): e008562CrossRefGoogle Scholar
  6. Balk EM, Bonis PA, Moskowitz H, Schmid CH, Ioannidis JP, Wang C, Lau J (2002) Correlation of quality measures with estimates of treatment effect in meta-analyses of randomized controlled trials. JAMA 87: 2973–2982CrossRefGoogle Scholar
  7. Bafeta A, Dechartres A, Trinquart L, Yavchitz A, Boutron I, Ravaud P (2012) Impact of single centre status on estimates of intervention effects in trials with continuous outcomes: meta-epidemiological study. BMJ 44: e813CrossRefGoogle Scholar
  8. Bastian H et al (2010) Seventy-five trials and eleven systematic reviews a day: How will we ever keep up? PLoS Med 7: e1000326CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bialy L, Vandermeer B, Lacaze-Masmonteil T, Dryden DM, Hartling L (2014) A meta-epidemiological study to examine the association between bias and treatment effects in neonatal trials. Evid Based Child Health 9: 1052–1059CrossRefPubMedGoogle Scholar
  10. Bekelman JE, Li Y, Gross CP (2003) Scope and impact of financial conflicts of interest in biomedical research: a systematic review. JAMA 89: 454–465. PMID: 12533125CrossRefGoogle Scholar
  11. Bertram L, Tanzi RE (2008). Thirty years of Alzheimer's disease genetics: the implications of systematic meta-analyses. Nat Rev Neurosci : 768–878Google Scholar
  12. Blümle A, Antes G, Schumacher M, Just H, von Elm E (2008) Clinical research projects at a German medical faculty: follow-up from ethical approval to publication and citation by others. J Med Ethics 4:e20. PMID: 18757621CrossRefGoogle Scholar
  13. Booth A, Clarke M, Dooley G, Ghersi D, Moher D, Petticrew M, Stewart L (2012) The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 1: 2CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chalmers I, Bracken MB, Djulbegovic B, Garattini S, Grant J, Gülmezoglu AM, Howells DW, Ioannidis JP, Oliver S (2014) How to increase value and reduce waste when research priorities are set. Lancet 83: 156–165CrossRefGoogle Scholar
  15. Chan AW, Hrobjartsson A, Haahr MT, Gotzsche PC, Altman DG (2004) Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. JAMA 91: 2457–2465CrossRefGoogle Scholar
  16. Chandler J, Hopewell S (2013) Cochrane methods – twenty years experience in developing systematic review methods. Syst Rev 2: 76CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ciani O, Buyse M, Garside R, Pavey T, Stein K, Sterne JA, Taylor RS (2013) Comparison of treatment effect sizes associated with surrogate and final patient relevant outcomes in randomised controlled trials: meta-epidemiological study. BMJ 46: f457CrossRefGoogle Scholar
  18. Contopoulos-Ioannidis DG, Gilbody SM, Trikalinos TA, Churchill R, Wahlbeck K, Ioannidis JP (2005) Comparison of large versus smaller randomized trials for mental health-related interventions. Am J Psychiatry 62: 578–584CrossRefGoogle Scholar
  19. Dechartres A, Boutron I, Trinquart L, Charles P, Ravaud P (2011) Single-center trials show larger treatment effects than multicenter trials: evidence from a meta– epidemiologic study. Ann Intern Med 55: 39–51CrossRefGoogle Scholar
  20. Dechartres A, Trinquart L, Boutron I, Ravaud P (2013) Influence of trial sample size on treatment effect estimates: meta-epidemiological study. BMJ 46: f2304CrossRefGoogle Scholar
  21. Dechartres A, Trinquart L, Faber T, Ravaud P (2016) Empirical evaluation of which trial characteristics are associated with treatment effect estimates. J Clin Epidemiol 7: 24–37CrossRefGoogle Scholar
  22. Dechartres A, Ravaud P, Atal I, Riveros C, Boutron I (2016) Association between trial registration and treatment effect estimates: a meta-epidemiological study. BMC Med 4: 100CrossRefGoogle Scholar
  23. Dwan K, Gamble C, Williamson PR, Kirkham JJ (2013) Reporting Bias Group. Systematic Review of the Empirical Evidence of Study Publication Bias and Outcome Reporting Bias – An Updated Review. PLoS One 8(7): e66844PubMedGoogle Scholar
  24. Dumas-Mallet E, Smith A, Boraud T, Gonon F (2017) Poor replication validity of biomedical association studies reported by newspapers. PLoS One 2(2): e0172650CrossRefGoogle Scholar
  25. Elm E von, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP (2007) STROBE Initiative. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ 35: 806–808CrossRefGoogle Scholar
  26. Evidence-Based Medicine Working Group (1992) Evidence-based medicine. A new approach to teaching the practice of medicine. JAMA 68: 2420–2425Google Scholar
  27. Ferreira-Gonzalez I, Busse JW, Heels-Ansdell D, Montori VM, Akl EA, Bryant DM, Alonso-Coello P, Alonso J, Worster A, Upadhye S, Jaeschke R, Schünemann HJ, Permanyer-Miralda G, Pacheco-Huergo V, Domingo-Salvany A, Wu P, Mills EJ, Guyatt GH (2007) Problems with use of composite end points in cardiovascular trials: systematic review of randomised controlled trials. BMJ 334: 786.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Glasziou P, Moynihan R, Richards T, Godlee F (2013) Too much medicine too little care. BMJ 47: f4247CrossRefGoogle Scholar
  29. Greenhalgh T, Howick J, Maskrey N (2014) Evidence Based Medicine Renaissance Group. Evidence based medicine: a movement in crisis? BMJ 48: g3725Google Scholar
  30. Guyatt GH, Oxman AD, Schünemann HJ, Tugwell P, Knottnerus A (2011) GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. J Clin Epidemiol 4: 380–382CrossRefGoogle Scholar
  31. Hartling L, Hamm MP, Fernandes RM, Dryden DM, Vandermeer B (2014) Quantifying bias in randomized controlled trials in child health: a meta-epidemiological study. PLoS One 9: e88008CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K (2009) Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev 1: MR000006Google Scholar
  33. Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG, Contopoulos-Ioannidis DG, Lau J (2001) Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA 86: 821–830CrossRefGoogle Scholar
  34. Ioannidis JP (2014) How to make more published research true. PLoS Med 1(10): e1001747CrossRefGoogle Scholar
  35. Ioannidis JP, Greenland S, Hlatky MA, Khoury MJ, Macleod MR, Moher D, Schulz KF, Tibshirani R (2014) Increasing value and reducing waste in research design, conduct, and analysis. Lancet 383: 166–175CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ioannidis JP (2005) Why most published research findings are false. PLoS Med 8: e124CrossRefGoogle Scholar
  37. Ioannidis JP (2016) The Mass Production of Redundant, Misleading, and Conflicted Systematic Reviews and Meta-analyses. The Milbank quarterly 4: 485–514CrossRefGoogle Scholar
  38. Ioannidis JP (2016) Why Most Clinical Research Is Not Useful. PLoS Med 3(6): e1002049CrossRefGoogle Scholar
  39. Kane RL, Wang J, Garrard J (2007) Reporting in randomized clinical trials improved after adoption of the CONSORT statement. J Clin Epidemiol 60: 241–249CrossRefPubMedGoogle Scholar
  40. Kjaergard LL, Villumsen J, Gluud C (2001) Reported methodologic quality and discrepancies between large and small randomized trials in meta-analyses. Ann Intern Med 35: 982–989CrossRefGoogle Scholar
  41. Kolfschooten F van (2002) Conflicts of interest: Can you believe what you read? Nature 16: 360–363CrossRefGoogle Scholar
  42. LeLorier J, Gregoire G, Benhaddad A, Lapierre J, Derderian F (1997) Discrepancies between meta-analyses and subsequent large randomized, controlled trials. N Engl J Med 37: 536–542CrossRefGoogle Scholar
  43. Liberati A, Altman DG, Tetzlaff J et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 6: e1000100CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lumbreras B, Parker LA, Porta M, Pollán M, Ioannidis JP, Hernández-Aguado I (2009) Overinterpretation of clinical applicability in molecular diagnostic research. Clin Chem 5: 786–94CrossRefGoogle Scholar
  45. Macleod MR, Michie S, Roberts I, Dirnagl U, Chalmers I, Ioannidis JP, Al-Shahi Salman R, Chan AW, Glasziou P (2014) Biomedical research: increasing value, reducing waste. Lancet 83: 101–104CrossRefGoogle Scholar
  46. Moher D, Tetzlaff J, Tricco AC, Sampson M, Altman DG (2007) Epidemiology and reporting characteristics of systematic reviews. PLoS Med 4: e78CrossRefPubMedPubMedCentralGoogle Scholar
  47. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 7: e1000097CrossRefGoogle Scholar
  48. Moher D, Schulz KF, Altman D, CONSORT Group (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. JAMA 85: 1987–1991CrossRefGoogle Scholar
  49. Munafò MR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Percie du Sert N, Simonsohn U, Wagenmakers E, Ware JJ, Ioannidis JPA (2017) A manifesto for reproducible science. Nat Hum Behav 1: 0021CrossRefGoogle Scholar
  50. Nüesch E, Trelle S, Reichenbach S, Rutjes AW, Bürgi E, Scherer M et al (2009) The effects of excluding patients from the analysis in randomised controlled trials: meta-epidemiological study. BMJ 39: b3244CrossRefGoogle Scholar
  51. Nüesch E, Trelle S, Reichenbach S, Rutjes AW, Tschannen B, Altman DG et al (2010) Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ 41:c3515CrossRefGoogle Scholar
  52. Ochodo EA, de Haan MC, Reitsma JB, Hooft L, Bossuyt PM, Leeflang MM (2013) Overinterpretation and misreporting of diagnostic accuracy studies: evidence of „spin“. Radiology 67: 581–588.CrossRefGoogle Scholar
  53. Onishi A, Furukawa TA (2014) Publication bias is underreported in systematic reviews published in high-impact-factor journals: metaepidemiologic study. J Clin Epidemiol 7: 1320–1326CrossRefGoogle Scholar
  54. Page MJ, McKenzie JE, Kirkham J, Dwan K, Kramer S, Green S, Forbes A (2014) Bias due to selective inclusion and reporting of outcomes and analyses in systematic reviews of randomised trials of healthcare interventions. Cochrane Database Syst Rev. 10: MR000035Google Scholar
  55. Page MJ, Higgins JPT, Clayton G, Sterne JAC, Hröbjartsson A, Savović J (2016) Empirical Evidence of Study Design Biases in Randomized Trials: Systematic Review of Meta-Epidemiological Studies. PLoS ONE 1(7):e0159267CrossRefGoogle Scholar
  56. Papageorgiou SN (2016) Overview provides insights on the current status and future of meta-epidemiology. J Clin Epidemiol 7: 11–12CrossRefGoogle Scholar
  57. Pearson K (1904) Report on Certain Enteric Fever Inoculation Statistics. British Medical Journal 3: 1243–1246Google Scholar
  58. Prentice RL (2009) Surrogate and mediating endpoints: current status and future directions. J Natl Cancer Inst 101: 216–217CrossRefPubMedGoogle Scholar
  59. Reid IR, Bolland MJ (2013) Observational studies – just telling us what we want to hear or telling us where we need to look? J Bone Miner Res 8: 980–983CrossRefGoogle Scholar
  60. Ressing M, Blettner M, Klug SJ (2009) Systematische Übersichtsarbeiten und Metaanalysen. Dtsch Arztebl Int 106: 456–463PubMedPubMedCentralGoogle Scholar
  61. Rücker G, Schwarzer G, Carpenter JR, Binder H, Schumacher M (2011) Treatment-effect estimates adjusted for small-study effects via a limit meta-analysis. Biostatistics 2: 122–142.CrossRefGoogle Scholar
  62. Sacks HS, Berrier J, Reitman D, Ancona-Berk VA, Chalmers TC (1987) Meta-analysis of randomized controlled trials. New Engl J Med 16: 450–455CrossRefGoogle Scholar
  63. Savović J, Jones HE, Altman DG, Harris RJ, Jüni P, Pildal J, Als-Nielsen B, Balk EM, Gluud C, Gluud LL, Ioannidis JP, Schulz KF, Beynon R, Welton NJ, Wood L, Moher D, Deeks JJ, Sterne JA (2012) Influence of reported study design characteristics on intervention effect estimates from randomized, controlled trials. Ann Intern Med 57: 429–438CrossRefGoogle Scholar
  64. Savović J, Harris RJ, Wood L, Beynon R, Altman D, Als-Nielsen B, Balk EM, Deeks J, Gluud LL, Gluud C, Ioannidis JP, Jűni P, Moher D Pildal J, Schulz KF, Sterne JA (2010) Development of a combined database for meta-epidemiological research. Res Synth Methods 1: 212–225CrossRefPubMedGoogle Scholar
  65. Shea BJ, Grimshaw JM, Wells GA, Boers M, Andersson N, Hamel C, Porter AC, Tugwell P, Moher D, Bouter LM (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7: 10CrossRefPubMedPubMedCentralGoogle Scholar
  66. Smith GC, Pell JP (2003) Parachute use to prevent death and major trauma related to gravitational challenge: systematic review of randomised controlled trials. BMJ 27: 1459–1461CrossRefGoogle Scholar
  67. Stewart L, Moher D, Shekelle P (2012) Why prospective registration of systematic reviews makes sense. Syst Rev 1: 7CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sterne JA, Juni P, Schulz KF, Altman DG, Bartlett C, Egger M (2002) Statistical methods for assessing the influence of study characteristics on treatment effects in „meta-epidemiological” research. Stat Med 1: 1513–1524CrossRefGoogle Scholar
  69. Tramèr MR, Reynolds DJ, Moore RA, McQuay HJ (1997) Impact of covert duplicate publication on meta-analysis: a case study. BMJ 15: 635–640CrossRefGoogle Scholar
  70. Turner EH, Matthews AM, Linardatos E, Tell RA, Rosenthal R (2008) Selective publication of antidepressant trials and its influence on apparent efficacy. N Engl J Med 58: 252–260CrossRefGoogle Scholar
  71. Tzoulaki I, Siontis KC, Ioannidis JP (2011) Prognostic effect size of cardiovascular biomarkers in datasets from observational studies versus randomised trials: meta-epidemiology study. BMJ 43:e2014019Google Scholar
  72. Unverzagt S, Prondzinsky R, Peinemann F (2013) Single-center trials tend to provide larger treatment effects than multicenter trials: a systematic review. J Clin Epidemiol 6: 1271–1280CrossRefGoogle Scholar
  73. Vandenbroucke JP (2004) When are observational studies as credible as randomised trials? Lancet 63: 1728–1731CrossRefGoogle Scholar
  74. Wood L, Egger M, Gluud LL, Schulz KF, Jüni P, Altman DG et al (2008) Empirical evidence of bias in treatment effect estimates in controlled trials with different interventions and outcomes: meta-epidemiological study. BMJ 36: 601–605CrossRefGoogle Scholar
  75. Wood JA (2007) Methodology for dealing with duplicate study effects in a meta-analysis. Organ res methods 1: 79–95Google Scholar
  76. Xu L, Freeman G, Cowling BJ, Schooling CM (2013) Testosterone therapy and cardiovascular events among men: a systematic review and meta-analysis of placebo-controlled randomized trials. BMC Medicine 1: 108CrossRefGoogle Scholar
  77. Yao L, Li Y, Ghosh S, Evans JA, Rzhetsky A (2015) Health ROI as a measure of misalignment of biomedical needs and resources. Nat Biotechnol 3: 807–811CrossRefGoogle Scholar
  78. Young SN (2009) Bias in the research literature and conflict of interest: an issue for publishers, editors, reviewers and authors, and it is not just about the money. J Psychiatry Neurosci 4: 412–417Google Scholar
  79. Yu LM, Chan AW, Hopewell S, Deeks JJ, Altman DG (2010) Reporting on covariate adjustment in randomised controlled trials before and after revision of the 2001 CONSORT statement: a literature review. Trials 1: 59CrossRefGoogle Scholar
  80. Zhang W, Robertson J, Jones AC, Dieppe PA, Doherty M (2008) The placebo effect and its determinants in osteoarthritis: meta-analysis of randomised controlled trials. Ann Rheum Dis 67: 1716–1723CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  1. 1.EUFHEuropäische Fachhochschule Rhein/Erft GmbHRostockDeutschland

Personalised recommendations