Advertisement

Lichtquanten pp 193-222 | Cite as

Experimente zur Quantenmechanik des Photons seit 1945

  • Klaus Hentschel
Chapter

Zusammenfassung

Kapitel 8 diskutiert neuere Experimente zur Quantenmechanik des Photons (seit 1945). Dabei beginnt Abschn. 8.1 mit Photonenklumpen, wie sie seit den von Hanbury Brown und Twiss (HBT) 1955–57 ausgeführten Experimenten untersucht werden. Abschn. 8.2–3 setzen fort mit einem Bericht über Experimente an einzelnen Photonen vor dem halbdurchlässigen Spiegel bzw. zu Ein-Photon-Interferenzen von Taylor 1909 bis Grangier et al. (1986). Abschn. 8.4–5 behandeln Experimente von Alain Aspect und seinem französischen Team über EPR Photon-Photon-Korrelationen 1980ff. bzw. Wheelers delayed choice und „Welcher Weg-Experimente“, später fortgeführt (in 8.8) über Quantenverschränkung und Quantenteleportation. Abschn. 8.6 behandelt photon-bunching und den dieses Zusammenclustern von Photonen, die als Spin-1-Teilchen quantenstatistisch gesehen Bosonen sind, experimentell bestätigenden Hong-Ou-Mandel-Dip; der darauf folgende Abschnitt behandelt Photonen-antibunching in der Resonanzfluoreszenz. Der letzte, neunte Abschnitt dieses 8. Kapitels behandelt erst im Februar 2017 bekanntgewordene hochenergetische Streuungs-Experimente mit Bleiionen am Large-Hadron-Collider (LHC) des CERN, die womöglich die erste direkte Beobachtung der Photon-Photon-Streuung darstellen, welche zuvor nur in einer Vielzahl indirekter Indizien getestet werden konnte.

Bibliographische Abkürzungen

  1. Aspect, Alain & Philippe Grangier & Gérard Roger (1982) Experimental realization of Einstein-Poldolsky-Rosen-Bohm Gedankenexperiment. A new violation of Bell’s inequalities, a) Physical Review Letters 49,2: 91–94; b) Reprint in Meystre & Walls (Hg.) 1991: 382–385.Google Scholar
  2. Baldzuhn, J. & E. Mohler & W. Martienssen (1989) A wave-particle delayed choice experiment with a single-photon state, Zeitschrift für Physik B77,2: 347–352.Google Scholar
  3. Batchelor, George K. (1996) The Life and Legacy of G. I. Taylor, Cambridge: Cambridge University Press.MATHGoogle Scholar
  4. Beller, Mara (1999) Quantum Dialogue The Making of a Revolution Quantum Dialogue, Chicago: Univ. of Chicago Press.MATHGoogle Scholar
  5. C. H. Bennett, W. K. Wootters et al. (1993) Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels, Physical Review Letters 70: 1895.ADSMathSciNetCrossRefMATHGoogle Scholar
  6. —(1949) Discussion with Einstein on epistemological problems in physics, in: Albert Einstein, Philosopher Scientist, hrsg. v. P.A. Schilpp, Evanston, Ill.: Library of Living Philsophers, 1949 (reprint 1951 u. öfter): 199–242.Google Scholar
  7. Born, Max (1926) Zur Quantenmechanik der Stoßvorgänge, Zeitschrift für Physik 37: 863–867.ADSCrossRefMATHGoogle Scholar
  8. Brannen, Eric & H.I.S. Ferguson (1956) Question of correlation between photons in coherent light rays, Nature 178: 481–482, s. a. Komm. v. Purcell 1956.Google Scholar
  9. —(2010) Modelling the Hanbury Brown-Twiss Effect; The Mid-Twentieth Century Revolution in Optics; A Talk for HQ3; Berlin: MPI, available online at: http://mediathek.mpiwg-berlin.mpg.de/mediathekPublic/versionEins/Conferences-Workshops/HQ3/Quantum-Optics/Joan-Bromberg.html
  10. Brukner, Časlav & Anton Zeilinger (1997) Nonequivalence between stationary matter wave optics and stationary light optics, Physical Review Letters 79: 2599–2613.ADSMathSciNetCrossRefMATHGoogle Scholar
  11. Campbell, Norman Robert (1909) Discontinuities in light emission, Proceedings of the Cambridge Philosophical Society 15: 310–328 u. 513–527.Google Scholar
  12. Chiao, Raymond & John Garrison (2008) Quantum Optics, Oxford: OUP, a) 1st ed. 2008, b) exp. 2nd ed. 2014.Google Scholar
  13. Clauser, John Francis (1974) Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effect, Physical Review D 9: 853–860.ADSGoogle Scholar
  14. Clauser, J.F. & Abner Shimony (1978) Bell’s Theorem: experimental tests and implications, Reports on Progress in Physics 41: 1881–1927.ADSCrossRefGoogle Scholar
  15. Crisp, Michael D. & Edwin T. Jaynes (1969) Radiative effects in semiclassical theory, Physical Review 179,5: 1253–1261.ADSCrossRefGoogle Scholar
  16. Dagenais, M. & L. Mandel (1978) Investigation of two-time correlations in photon emission from a single atom, Physical Review A18: 2217–2228, s. a. Kimble et al. 1977.Google Scholar
  17. Davis, J. & Bernard Lovell (2003) Robert Hanbury Brown, Biographical Memoirs of Fellows of the Royal Society 49: 83–106 sowie in Historical Records of Australian Science 14: 459–483.CrossRefGoogle Scholar
  18. Dempster, A.J. & H. F. Batho (1927) Light Quanta and Interference, Physical Review (2) 30: 644–648.ADSCrossRefGoogle Scholar
  19. —(1930) The Principles of Quantum Mechanics, Oxford: Clarendon, a) 1. Aufl. 1930; b) 2. Aufl. 1935; c) 3. Aufl. 1947, d) 4. Aufl. 1958.Google Scholar
  20. —(1949) Autobiographical Notes, in Einstein: Philosopher-Scientist, hrsg. v. P.A. Schilpp, Evanston, Ill.: Library of Living Philosophers, 1949: 3–95.Google Scholar
  21. Einstein, A. & Boris Podolsky & Nathan Rosen (1935) Can quantummechanical description of physical reality be considered complete? Physical Review (2) 47: 777–780.ADSCrossRefMATHGoogle Scholar
  22. d’Espagnat, Bernard (1971) Conceptual Foundations of Quantum Mechanics, a) New York 1971; b) 2nd ed. Reading, Mass.: Perseus Books1999.Google Scholar
  23. Fano, Ugo (1961) Quantum theory of interference effects in the mixing of light from phase independent sources, American Journal of Physics 29: 539–545.ADSCrossRefGoogle Scholar
  24. Fellgett, Peter (1957) The question of correlation between photons in coherent beams of light, Nature 179: 956–957.ADSCrossRefGoogle Scholar
  25. Fellgett, P. & R. Clark Jones & R.Q. Twiss (1959) Fluctuations in photon streams, Nature 184: 967–969.ADSCrossRefGoogle Scholar
  26. Freedman, Stuart Jay & John F. Clauser (1972) Experimental test of local hidden-variable theories, Physical Review Letters 28: 938–941.ADSCrossRefGoogle Scholar
  27. Freire, Olival Jr. (2006) Philosophy enters the optics laboratory: Bell’s Theorem and its first experimental tests (1965–1982), Studies In History and Philosophy of Science B 37,4: 577–616.Google Scholar
  28. Freire, O. Jr. et al. (2013) As contribuiçoes de John Clauser para o primeiro teste experimental do teorema de Bell: uma análise das técnicas e da cultura material, Revista Brasileira de Ensino de Fisica 35,3,3603: 1–7.Google Scholar
  29. Friebe, Cord et al. (2015) Philosophie der Quantenphysik, Heidelberg: Springer Spektrum.CrossRefGoogle Scholar
  30. —(1963) Coherent and incoherent states of the radiation field, c) Physical Review (2) 131: 2766–2788; d) Reprint in Meystre & Walls (Hg.) 1991: 2–24.Google Scholar
  31. Grangier, Philippe (2002) Single photons stick together, Nature 419: 577, s. a. Santori (2002).ADSCrossRefGoogle Scholar
  32. Grangier, P. & Gérard Roger & Alain Aspect (1986) Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single- photon interferences, a) Europhysics Letters 1: 173–179; b) Reprint in Meystre & Walls (Hg.) 1991: 336–342.Google Scholar
  33. —(1956b) A test of a new type of stellar interferometer on Sirius, Nature 178: 1046–1048.Google Scholar
  34. —(1927) Über den anschaulichen Inhalt der quantenmechanischen Kine- matik und Mechanik, Zeitschrift für Physik 43: 172–198.Google Scholar
  35. —(1930) Physikalische Prinzipien der Quantentheorie (Vorlesungen an der University of Chicago 1930) a) Mannheim: BI Hochschultaschenbuch 1930 u. öfter; b) Neuauflage Heidelberg: Spektrum, 1991.Google Scholar
  36. —(1959) Physik und Philosophie, Stuttgart: Hirzel, a) 1. Aufl. 1959; b) 5.Google Scholar
  37. Henderson, Giles (1980) Quantum dynamics and a semiclassical description of the photon,American Journal of Physics 48: 604–611, s. a. Komm. v. Berger (1981).Google Scholar
  38. Henry, M. et al. (1999) The fermionic Hanbury Brown and Twiss experiment, Science 284: 296–298.ADSCrossRefGoogle Scholar
  39. —(2014) Zur Rezeption von Vaihingers Philosophie des Als-Ob in der Physik, in Matthias Neuber (Hg.) Fiktion und Fiktionalismus. Beiträge zu Hans Vaihingers Philosophie des Als-Ob, Würzburg: Königshausen & Neumann, 2014, S. 161–186.Google Scholar
  40. Home, Dipankar & Andrew Whitaker (2007) Einstein’s Struggles with Quantum Theory. A Reappraisal, New York: Springer.MATHGoogle Scholar
  41. Hong, Chong-Ki & Zhe-Yu Ou & L. Mandel (1987) Measurement of subpi- cosecond time intervals between two photons by interference, Physical Review Letters 59: 2044–2046; s. a. Ou & Mandel (1988).Google Scholar
  42. Howard, Don (2004) Who Invented the Copenhagen Interpretation? A Study in Mythology, Philosophy of Science 71: 669–682.MathSciNetCrossRefGoogle Scholar
  43. Jacques, Vincent et al. (2007) Experimental realization of Wheeler’s delayed- choice gedanken experiment, Science 315: 966–968.ADSCrossRefGoogle Scholar
  44. —(2008) Delayed-choice test of complementarity with single photons, Physical Review Letters 100, 22:220402.Google Scholar
  45. Jánossy, Lajos & Zs. Náray (1957) The interference phenomena of light at very low intensities, Acta Physica Academiae Scientiarum Humgaricae 7: 493–425.Google Scholar
  46. Javan, Ali & E.A. Ballik & W.L. Bond (1962) Frequency characteristics of a continuous H-Ne optical maser, Journal of the Optical Society of America 52: 96–98.CrossRefGoogle Scholar
  47. —(1973) Survey of the Present Status of Neoclassical Radiation Theory, in: Coherence and Quantum Optics, hrsg. v. L. Mandel & E. Wolf, New York: Plenum, 1973: 35–81.Google Scholar
  48. Kahn, F. D. (1958) On photon coincidences and Hanbury Brown’s interferometer, Optica Acta 5: 93–100.ADSCrossRefGoogle Scholar
  49. Kiesel, H. et al. (2002) Observation of Hanbury Brown-Twiss anticorrelation for free electrons, Nature 418: 392–394.ADSCrossRefGoogle Scholar
  50. Kimble, H.J. & M. Dagenais & L. Mandel (1977) Photon antibunching in resonance fluorescence, a) Physical Review Letters 39: 691–695; b) Reprint in Meystre & Walls (Hg.) 1991: 100–104; s. a. Dagenais & Mandel (1978).Google Scholar
  51. Kocher, Carl A. & Eugene D. Commins (1967) Polarization correlation of photons emitted in an atomic cascade, Physical Review Letters 18: 575–577.ADSCrossRefGoogle Scholar
  52. Lamb, W.E. & Marlan O. Scully (1969) The photoelectric effect without photons, a) CTS-QED-68-1 (preprint), b) publ. in Polarisation, matière et Rayonnement, Paris: Presses Univ. de France, 1969: 363–369.Google Scholar
  53. Lewis, Peter J. (2006) Conspiracy Theories of Quantum Mechanics, British Journal for the Philosophy of Science 57,2: 359–381.MathSciNetCrossRefGoogle Scholar
  54. Loudon, Rodney: Quantum Theory of Light, Oxford: Clarendon Press, a)1. Aufl. 1973; b) 2. Aufl. 1983; c) Oxford Univ. Press, 3. Aufl. 2000.Google Scholar
  55. Magyar, G. & L. Mandel (1963) Inereference fringes produced by superposition of two independent maser light beams, Nature 198: 255–256.ADSCrossRefGoogle Scholar
  56. Mandel, Leonard & E. Wolf (1961) Correlation in the fluctuating outputs from two square-law detectors illuminated by light of any state of coherence and polarization, Physical Review (2) 124,6: 1696–1702.CrossRefMATHGoogle Scholar
  57. Meystre, Pierre & Daniel F. Walls (Hg.) (1991) Nonclassical Effects in Quantum Optics: A Collection of Reprints, New York: American Institute of Physics.Google Scholar
  58. Morgan, B.L. & Mandel, Leonard (1966) Measurement of photon bunching in a thermal light beam, a) Physical Review Letters 16, 12:1012–1015; b) Reprint in Meystre & Walls (Hg.) 1991: 33–37.Google Scholar
  59. O’Brien, Allyson (2010) Wheeler’s Delayed Choice Experiment, only available online at http://einstein.drexel.edu/~bob/TermPapers/WheelerDelayed.pdf
  60. —(1982) Subtle is the Lord, Oxford: Oxford Univ. Press, 1982; in dt. Übers.: Raffiniert ist der Herrgott, Heidelberg, Berlin: Springer 2000.Google Scholar
  61. Paul, Harry (1985) Photonen. Experimente und ihre Deutung, Berlin: Akademie-Verlag, 1. Aufl. 1985; b) erw. mit neuem Untertitel Photonen. Eine Einführung in die Quantenoptik, Wiesbaden: Vieweg, 1995 u. öfter.Google Scholar
  62. —(1986) Interference between independent photons, Reviews of Modern Physics 58: 209–223.Google Scholar
  63. Pfleegor, R.L. & L. Mandel (1967) Interference of independent photon beams, Physical Review (2) 159: 1084–1088.ADSCrossRefGoogle Scholar
  64. Pipkin, F.M. (1978) Atomic Physics Tests of the Basic Concepts in Quantum Mechanics, Advances in Atomic and Molecular Physics 4: 281–340.Google Scholar
  65. Popkin, Gabriel (2017) China’s quantum satellite achieves ’spooky action’ at record distance, Science 2017, no. 5 06.Google Scholar
  66. Purcell, E.M. (1956) Question of correlation between photons in coherent light rays, Nature 178: 1148–1150 (= Komm. zu Brannen & Ferguson 1956).Google Scholar
  67. Roychoudhuri, Chandrasekhar (2006) Do we count indivisible photons or discrete quantum events experienced by detectors?, in: Advanced Photon counting Techniques (SPIE Vol. 6372, no. 29).Google Scholar
  68. —(2008) What is a photon?, in Roychoudhuri et al. (Hg.) 2008: 129–141.Google Scholar
  69. —(2009) Indivisibility of the photon, in Roychoudhuri et al. (Hg.) 2009): 1–9.Google Scholar
  70. —(2015) Replacing the paradigm shift model in physics with continuous evolution of theory by frequent iterations, in Charles Tandy (Hg.) Sixty Years after Albert Einstein (1879–1955), Ann Arbor. Ria Univ. Press, 2015, S. 157–180.Google Scholar
  71. Roychoudhuri, C. & Rajarshi Roy (2003) The Nature of Light. What is a Photon?, Optics and Photonics News Supplement OPN-Trends, Oct.: S1-S35.Google Scholar
  72. Santori, Charles et al. (2002) Indistinguishable photons from a single-photon device, Nature 419: 594–597, s. a. Grangier (2002).Google Scholar
  73. —(1927a) Über den Comptoneffekt, Annalen der Physik (4) 82 (=387,2): 257–264.Google Scholar
  74. Scully, Marlan Ovil & Muhammad Suhail Zubairy (1997) Quantum Optics, Cambridge: CUP.CrossRefMATHGoogle Scholar
  75. Shadbolt, Peter & Jonathan C. F. Mathews & Anthony Laing & Jeremy L. O’Brien (2014) Testing foundations of quantum mechanics with photons, Nature Physics 10: 278–286.ADSCrossRefGoogle Scholar
  76. Sillitto, Richard M. (1957) Correlation between events in photon detectors, Nature 179: 1127–1128.ADSCrossRefGoogle Scholar
  77. —(1960) Light waves, radio waves and photons, The Institute of Physics Bulletin 11, 5:129–134.Google Scholar
  78. —(2013) The concept of the photon in question-the controversy surrounding the HBT effect 1957–58, Historical Studies in the Natural Sciences 43, 4:453–491.Google Scholar
  79. Spence, John C.H. (2002) Quantum physics: Spaced-out electrons, Nature 418: 377–379.Google Scholar
  80. Sulcs, Sue (2003) The nature of light and twentieth-century experimental physics, Foundations of Science 8: 365–391.MathSciNetCrossRefGoogle Scholar
  81. Tango, W. (2006) Richard Quentin Twiss 1920–2005, Astronomy and Geophysics 47: 333.Google Scholar
  82. Taylor, Geoffrey Ingram (1909) Interference fringes with feeble light, Proceedings of the Cambridge Philosophical Society 15: 114–115.Google Scholar
  83. Tegmark, M. & John Archibald Wheeler (2001) 100 years of quantum mysteries, Scientific American (Feb.): 72–79.Google Scholar
  84. Weizsäcker, Carl Friedrich von (1931) Ortsbestimmung eines Elektrons durch ein Mikroskop, Zeitschrift für Physik 70: 114–130.ADSCrossRefMATHGoogle Scholar
  85. —(1941) Zur Deutung der Quantenmechanik, Zeitschrift für Physik 118: 489–509.Google Scholar
  86. — (1927) Zur Theorie des Comptoneffektes I–II, Zeitschrift für Physik 43: 1–8, 779–787.Google Scholar
  87. Wheeler, John Archibald (1978) The ‚Past‘ and the ‚Delayed-Choice DoubleSlit Experiment‘, in A.R. Marlow (Hg.) Mathematical Foundations of Quantum Theory, New York: Academic Press, S. 9–48.Google Scholar
  88. Wheeler, J.A. & Kenneth Ford: Geons, Black Holes, and Quantum Foam – A Life in Physics, Norton, New York-London 1998.Google Scholar
  89. Wheeler, J.A. & W. H. Zurek (Hg.) (1983) Quantum Theory and Measurement, Princeton: Princeton Univ. Press.CrossRefGoogle Scholar
  90. Whitaker, Andrew (2012) The New Quantum Age. From Bell’s Theorem to Quantum Computation and Teleportation, Oxford: OUP.MATHGoogle Scholar
  91. Wootters, W.K. & Wojciech H. Zurek (1982) A single quantum cannot be cloned, Nature 299: 802–3.ADSCrossRefMATHGoogle Scholar
  92. Yin, Juan (2017) Satellite-based entanglement distribution over 1200 kilometers, Science 356: 1140–1144.CrossRefGoogle Scholar
  93. Zajonc, Arthur (1993) Catching the Light. The Entwined History of Light and Mind, New York: Bantam Books.Google Scholar
  94. —(2012) Physik ohne Realität: Tiefsinn oder Wahnsinn, Heidelberg: Springer.Google Scholar
  95. Zeilinger, Anton (2003) Einsteins Schleier. Die neue Welt der Quantenphysik, München: Beck, 2005.MATHGoogle Scholar
  96. —(2005) Einsteins Spuk – Teleportation und weitere Mysterien der Quantenphysik, a) Gütersloh: Bertelsmann, 2005; b) München: Goldmann 2007 (orig. engl. Random House).Google Scholar
  97. Zeilinger, A. et al. (1997/98) Experimental quantum teleportation, a) Nature 390 (1997): 575–579; b) in Philosophical Transactions of the Royal Society London A 356 (1998): 1733–1737.Google Scholar
  98. —(2005) Happy centenary, photon, Nature 433: 230–238.Google Scholar
  99. Zeilinger, A., Xiao-Song Ma et al. (2012a) Quantum teleportation over 143 kilometres using active feed-forward, Nature 489: 269–273.ADSCrossRefGoogle Scholar
  100. —(2012b) Experimental quantum teleportation over a high-loss free-space channel, Optics Express 20, issue 21, No. 23126, 8th Oct. 2012.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Klaus Hentschel
    • 1
  1. 1.Historisches InstitutUniversität StuttgartStuttgartDeutschland

Personalised recommendations