Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 237 Accesses

Abstract

By employing real-time microscopic techniques, the confinement effect of single-layer graphene on the chemistry of CO/Pt(111) system is studied. We find that the CO molecules can easily intercalate between graphene and Pt(111) even under UHV condition at room temperature. Interestingly, CO desorb from the interfacial space between graphene and Pt(111) around room temperature. In contrast, the desorption temperature of CO from bare Pt(111) is ~420 K. DFT calculations show the adsorption energy of CO on Pt(111) is decreased by the confinement effect of graphene on top. Furthermore, the dynamic process of CO oxidation is also studied. We find that the graphene wrinkles act as the reaction channels for CO desorption and CO oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel D et al (2011) Mapping the local reaction kinetics by PEEM: CO oxidation on individual (100)-type grains of Pt foil. Surf Sci 605(23–24):1999–2005

    Article  CAS  Google Scholar 

  2. Kim M et al (2001) Controlling chemical turbulence by global delayed feedback: pattern formation in catalytic CO oxidation on Pt(110). Science 292(5520):1357–1360

    Article  CAS  Google Scholar 

  3. Ertl G (2008) Reactions at surfaces: from atoms to complexity (Nobel Lecture). Angewandte Chemie-Int Ed 47(19):3524–3535

    Article  CAS  Google Scholar 

  4. Hannon JB et al (2006) The influence of the surface migration of Gold on the growth of Silicon nanowires. Nature 440(7080):69–71

    Article  CAS  Google Scholar 

  5. Yim CM et al (2008) Low-energy electron microscopy of CO/Pt(111) surface diffusion by nonequilibrium coverage profile evolution. Phys Rev B 78(15)

    Google Scholar 

  6. Altman MS, Chung WF, Liu CH (1998) LEEM phase contrast. Surf Rev Lett 5(6):1129–1141

    Article  CAS  Google Scholar 

  7. Sutter PW, Flege JI, Sutter EA (2008) Epitaxial Graphene on Ruthenium. Nat Mater 7(5):406–411

    Article  CAS  Google Scholar 

  8. Sutter P, Sadowski JT, Sutter E (2009) Graphene on Pt(111): growth and substrate interaction. Phys Rev B 80(24):245411

    Article  Google Scholar 

  9. N’Diaye AT et al (2009) In situ observation of stress relaxation in Epitaxial Graphene. New J Phys 11:113056

    Article  Google Scholar 

  10. Loginova E et al (2009) Defects of Graphene on Ir(111): rotational domains and ridges. Phys Rev B 80(8):085430

    Article  Google Scholar 

  11. Levy N et al (2010) Strain-induced pseudo-magnetic fields greater than 300 Tesla in Graphene Nanobubbles. Science 329(5991):544–547

    Article  CAS  Google Scholar 

  12. Mu R et al (2012) Visualizing chemical reactions confined under Graphene. Angew Chem Int Edit 51(20):4856–4859

    Article  CAS  Google Scholar 

  13. Sutter P, Sadowski JT, Sutter EA (2010) Chemistry under cover: tuning Metal-Graphene interaction by reactive intercalation. J Am Chem Soc 132(23):8175–8179

    Article  CAS  Google Scholar 

  14. Huang L et al (2011) Intercalation of metal islands and films at the interface of epitaxially grown Graphene and Ru(0001) surfaces. Appl Phys Lett 99(16)

    Google Scholar 

  15. Riedl C et al (2009) Quasi-free-standing Epitaxial Graphene on SiC obtained by hydrogen intercalation. Phys Rev Lett 103(24):246804

    Article  CAS  Google Scholar 

  16. Oida S et al (2010) Decoupling Graphene from SiC(0001) via oxidation. Phys Rev B 82(4):041411

    Article  Google Scholar 

  17. Wong SL et al (2011) Quasi-free-standing Epitaxial Graphene on SiC (0001) by Fluorine intercalation from a molecular source. ACS Nano 5(9):7662–7668

    Article  CAS  Google Scholar 

  18. Kinne M et al (2002) Kinetic parameters of CO adsorbed on Pt(111) studied by in situ high resolution X-ray photoelectron spectroscopy. J Chem Phys 117(23):10852–10859

    Article  CAS  Google Scholar 

  19. Blum V, Heinz K (2001) Fast LEED intensity calculations for surface crystallography using Tensor LEED. Comput Phys Commun 134(3):392–425

    Article  CAS  Google Scholar 

  20. Baker RW 2004 Membrane technology and applications, 2nd ed. Wiley

    Google Scholar 

  21. Predescu L, Tezel FH, Chopra S (1996) Adsorption of Nitrogen, Methane, Carbon Monoxide, and their binary mixtures on Aluminophosphate molecular sieves. Adsorption 3(1):7–25

    Article  Google Scholar 

  22. Lacovig P et al (2009) Growth of dome-shaped Carbon Nanoislands on Ir(111): the intermediate between carbidic clusters and quasi-free-standing Graphene. Phys Rev Lett 103(17):166101

    Article  Google Scholar 

  23. Feibelman PJ (2008) Pinning of Graphene to Ir(111) by Flat Ir Dots. Phys Rev B 77(16):165419

    Article  Google Scholar 

  24. Kinne M et al (2004) Coadsorption of D2O and CO on Pt(111) studied by in situ high-resolution X-ray photoelectron spectroscopy. Langmuir 20(5):1819–1826

    Article  CAS  Google Scholar 

  25. Wang JX et al (2005) Adsorbate-geometry specific subsurface relaxation in the CO/Pt(111) system. J Phys Chem B 109(1):24–26

    Article  CAS  Google Scholar 

  26. Lynch M, Hu P (2000) A density functional theory study of CO and atomic oxygen chemisorption on Pt(111). Surf Sci 458(1–3):1–14

    Article  CAS  Google Scholar 

  27. Preobrajenski AB et al (2008) Controlling Graphene corrugation on lattice-mismatched substrates. Phys Rev B 78(7):073401

    Article  Google Scholar 

  28. Khomyakov PA et al (2009) First-principles study of the interaction and charge transfer between Graphene and Metals. Phys Rev B 79(19)

    Google Scholar 

  29. Gao M et al (2010) Tunable interfacial properties of Epitaxial Graphene on metal substrates. Appl Phys Lett 96(5)

    Google Scholar 

  30. Eberlein T et al (2008) Plasmon spectroscopy of free-standing Graphene films. Phys Rev B 77(23):233406

    Article  Google Scholar 

  31. Sun JB et al (2010) Spatially-resolved structure and electronic properties of Graphene on Polycrystalline Ni. ACS Nano 4(12):7073–7077

    Article  CAS  Google Scholar 

  32. Langer T et al (2009) Graphitization process of SiC(0001) studied by electron energy loss spectroscopy. Appl Phys Lett 94(11)

    Google Scholar 

  33. Zhang YB et al (2005) Experimental observation of the quantum hall effect and Berry’s phase in Graphene. Nature 438(7065):201–204

    Article  CAS  Google Scholar 

  34. Novoselov KS et al (2007) Room-temperature quantum hall effect in Graphene. Science 315(5817):1379

    Article  CAS  Google Scholar 

  35. Schneider GF et al (2010) DNA translocation through Graphene Nanopores. Nano Lett 10(8):3163–3167

    Article  CAS  Google Scholar 

  36. Siwy ZS, Davenport M (2010) Nanopores Graphene opens up to DNA. Nat Nanotechnol 5(10):697–698

    Article  CAS  Google Scholar 

  37. Postma HWC (2010) Rapid sequencing of individual DNA molecules in Graphene Nanogaps. Nano Lett 10(2):420–425

    Article  CAS  Google Scholar 

  38. Meric I et al (2008) Current saturation in zero-bandgap, topgated Graphene field-effect transistors. Nat Nanotechnol 3(11):654–659

    Article  CAS  Google Scholar 

  39. Farmer DB et al (2009) Utilization of a buffered dielectric to achieve high field-effect carrier mobility in Graphene transistors. Nano Lett 9(12):4474–4478

    Article  CAS  Google Scholar 

  40. Fowler JD et al (2009) Practical chemical sensors from chemically derived Graphene. ACS Nano 3(2):301–306

    Article  CAS  Google Scholar 

  41. Yeo YY, Vattuone L, King DA (1997) Calorimetric heats for CO and Oxygen Adsorption and for the catalytic CO oxidation reaction on Pt(111). J Chem Phys 106(1):392–401

    Article  CAS  Google Scholar 

  42. Hellman A, Klacar S, Gronbeck H (2009) Low temperature CO Oxidation over supported ultrathin MgO films. J Am Chem Soc 131(46):16636–16637

    Article  CAS  Google Scholar 

  43. Pan XL, Bao XH (2011) The effects of confinement inside Carbon Nanotubes on catalysis. Acc Chem Res 44(8):553–562

    Article  CAS  Google Scholar 

  44. Castillejos E et al (2009) An efficient strategy to drive Nanoparticles into Carbon Nanotubes and the remarkable effect of confinement on their catalytic performance. Angew Chem Int Edit 48(14):2529–2533

    Article  CAS  Google Scholar 

  45. Pan XL et al (2007) Enhanced Ethanol production inside Carbon-Nanotube reactors containing catalytic particles. Nat Mater 6(7):507–511

    Article  CAS  Google Scholar 

  46. Atkinson SJ, Brundle CR, Roberts MW (1974) Ultraviolet and X-Ray photoelectron-spectroscopy (UPS and XPS) of CO, CO2, O2 and H2O on Molybdenum and gold-films. Faraday Discuss 58:62–79

    Article  Google Scholar 

  47. Kiss J, Revesz K, Solymosi F (1988) Photoelectron spectroscopic studies of the adsorption of CO2 on Potassium-Promoted Rh(111) surface. Surf Sci 207(1):36–54

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Mu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Mu, R. (2017). Reactivity of Graphene-Confined Pt(111) Surface. In: Construction and Reactivity of Pt-Based Bi-component Catalytic Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55244-5_6

Download citation

Publish with us

Policies and ethics