Skip to main content

Modulating the Structure and Reactivity of Pt–Ni Catalysts

  • Chapter
  • First Online:
Construction and Reactivity of Pt-Based Bi-component Catalytic Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 228 Accesses

Abstract

We show that the cycling oxidative and reductive treatments at variable temperatures can reversibly alternate the surface structure and reactivity of Pt–Ni bicomponent catalysts. Low-temperature (~423 K) oxidation of Pt-skin structure (Pt/Ni/Pt(111)) induces part of Ni diffuse outward and form NiO on surface. After further oxidation at a higher temperature of 623 K, the catalysts are completely encapsulated by NiO. When the Pt@NiO core–shell structure is reduced at low temperature (~423 K), part of Ni starts to diffuse inward. Upon the reduction at a high temperature of 623 K, the formation of Pt-skin surface is observed. The catalysts pretreated at low temperatures show high CO oxidation reactivity due to the formation of the sandwich-like structure with surface and subsurface Ni species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmadi TS et al (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924–1926

    Article  CAS  Google Scholar 

  2. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166

    Article  CAS  Google Scholar 

  3. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  Google Scholar 

  4. Yang PD et al (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Edit 45(46):7824–7828

    Article  Google Scholar 

  5. Xia Y et al (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103

    Article  CAS  Google Scholar 

  6. Somorjai GA, Li YM (2010) Nanoscale advances in catalysis and energy applications. Nano Lett 10(7):2289–2295

    Article  Google Scholar 

  7. Somorjai GA, Li YM (2011) Impact of surface chemistry. Proc Natl Acad Sci 108(3):917–924

    Article  CAS  Google Scholar 

  8. Yang H (2011) Platinum-based electrocatalysts with core-shell nanostructures. Angewandte Chem Int Ed 50(12):2674–2676

    Article  CAS  Google Scholar 

  9. Zhou SH et al (2005) Pt-Cu core-shell and alloy nanoparticles for heterogeneous NOx, reduction: anomalous stability and reactivity of a core-shell nanostructure. Angewandte Chem Int Ed 44(29):4539–4543

    Article  CAS  Google Scholar 

  10. Christensen CH, Norskov JK (2008) A molecular view of heterogeneous catalysis. J Chem Phys 128(18):182503

    Article  Google Scholar 

  11. Besenbacher F et al (1998) Design of a surface alloy catalyst for steam reforming. Science 279(5358):1913–1915

    Article  CAS  Google Scholar 

  12. Strasser P et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460

    Article  CAS  Google Scholar 

  13. Chen S et al (2009) Origin of Oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Article  CAS  Google Scholar 

  14. Mayrhofer KJJ et al (2009) Adsorbate-induced surface segregation for core-shell nanocatalysts. Angew Chem Int Ed 48(19):3529–3531

    Article  CAS  Google Scholar 

  15. Mayrhofer KJJ et al (2009) Degradation of carbon-supported pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131(45):16348–16349

    Article  CAS  Google Scholar 

  16. Hellman A, Klacar S, Gronbeck H (2009) Low temperature CO oxidation over supported ultrathin MgO films. J Am Chem Soc 131(46):16636–16637

    Article  CAS  Google Scholar 

  17. Tao F et al (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322(5903):932–934

    Article  CAS  Google Scholar 

  18. Tao F et al (2010) Evolution of structure and chemistry of bimetallic nanoparticle catalysts under reaction conditions. J Am Chem Soc 132(25):8697–8703

    Article  CAS  Google Scholar 

  19. Zheng F et al (2011) In-situ X-ray absorption study of evolution of oxidation states and structure of cobalt in Co and CoPt bimetallic nanoparticles (4 nm) under reducing (H2) and oxidizing (O2) environments. Nano Lett 11(2):847–853

    Article  CAS  Google Scholar 

  20. Menning CA, Chen JG (2010) Regenerating Pt-3d-Pt model electrocatalysts through oxidation-reduction cycles monitored at atmospheric pressure. J Power Sources 195(10):3140–3144

    Article  CAS  Google Scholar 

  21. Surnev S et al (2002) Reversible Dynamic behavior in catalyst systems: oscillations of structure and morphology. Phys Rev Lett 89(24):246101

    Article  CAS  Google Scholar 

  22. Kitchin JR, Reuter K, Scheffler M (2008) Alloy surface segregation in reactive environments: first-principles atomistic thermodynamics study of Ag3Pd(111) in oxygen atmospheres. Phys Rev B 77(7):075437

    Google Scholar 

  23. Tenney SA et al (2011) CO-induced diffusion of Ni atoms to the surface of Ni-Au clusters on TiO2(110). J Phys Chem C 115(22):11112–11123

    Article  CAS  Google Scholar 

  24. Mu RT et al (2009) Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Appl Surf Sci 255(16):7296–7301

    Article  CAS  Google Scholar 

  25. Knudsen J et al (2007) A Cu/Pt near-surface alloy for water-gas shift catalysis. J Am Chem Soc 129(20):6485–6490

    Article  CAS  Google Scholar 

  26. Kitchin JR et al (2003) Elucidation of the active surface and origin of the weak metal-hydrogen bond on Ni/Pt(111) bimetallic surfaces: a surface science and density functional theory study. Surf Sci 544(2–3):295–308

    Article  CAS  Google Scholar 

  27. Stamenkovic VR et al (2007) Trends in electrocatalysis on extended and nanoscale Pt-Bimetallic alloy surfaces. Nat Mater 6(3):241–247

    Article  CAS  Google Scholar 

  28. Mu R et al (2011) Oscillation of surface structure and reactivity of PtNi bimetallic catalysts with redox treatments at variable temperatures. J Phys Chem C 115(42):20590–20595

    Article  CAS  Google Scholar 

  29. Hagendorf C et al (2006) Pressure-dependent Ni-O phase transitions and Ni oxide formation on Pt(111): an in situ STM study at elevated temperatures. Phys Chem Chem Phys 8(13):1575–1583

    Article  CAS  Google Scholar 

  30. Bouwman R, Sachtler WM, Lippits GJM (1972) Photoelectric investigation of surface composition of equilibrated Ag-Pd alloys in ultrahigh-vacuum and in presence of Co. J Catal 25(3):350

    Article  CAS  Google Scholar 

  31. Bouwman R, Sachtler WM (1972) Photoelectric investigation of surface composition of equilibrated Pt-Ru alloy films in ultrahigh-vacuum and in presence of Co. J Catal 26(1):63

    Article  CAS  Google Scholar 

  32. Bouwman R et al (1976) Surface enrichment in Ag-Au alloys. Surf Sci 59(1):72–82

    Article  CAS  Google Scholar 

  33. McLean D (ed) (1957) Grain boundaries in metals. Clarendon Press, Oxford

    Google Scholar 

  34. Su HY, Bao XH, Li WX (2008) Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. J Chem Phys 128(19):194707

    Article  Google Scholar 

  35. Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63(5):201–254

    Article  CAS  Google Scholar 

  36. Kinne M et al (2004) Coadsorption of D2O and CO on Pt(111) studied by in situ high-resolution X-ray photoelectron spectroscopy. Langmuir 20(5):1819–1826

    Article  CAS  Google Scholar 

  37. Kitchin JR et al (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120(21):10240–10246

    Article  CAS  Google Scholar 

  38. Stamenkovic V et al (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901

    Article  CAS  Google Scholar 

  39. Kitchin JR et al (2004) Role of strain and ligand effects in the modification of the electronic and chemical Properties of bimetallic surfaces. Phys Rev Lett 93(15):156801

    Google Scholar 

  40. Alayoglu S, Eichhorn B (2008) Rh-Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130(51):17479–17486

    Article  CAS  Google Scholar 

  41. Alayoglu S et al (2008) Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7(4):333–338

    Article  CAS  Google Scholar 

  42. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94

    Article  CAS  Google Scholar 

  43. Ma T et al (2009) Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. Chem Phys Chem 10(7):1013–1016

    Article  CAS  Google Scholar 

  44. Mu R et al (2009) Reversible surface structural changes in Pt-based bimetallic nanoparticles during oxidation and reduction cycles. Appl Surf Sci 255(16):7296–7301

    Article  CAS  Google Scholar 

  45. Wang GF et al (2005) Monte carlo simulations of segregation in Pt-Ni catalyst nanoparticles. J Chem Phys 122(2):02470

    Article  Google Scholar 

  46. Deivaraj TC, Chen WX, Lee JY (2003) Preparation of PtNi nanoparticles for the electrocatalytic oxidation of methanol. J Mater Chem 13(10):2555–2560

    Article  CAS  Google Scholar 

  47. Leonard BM et al (2011) Facile synthesis of PtNi intermetallic nanoparticles: influence of reducing agent and precursors on electrocatalytic activity. Chem Mater 23(5):1136–1146

    Article  CAS  Google Scholar 

  48. Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25(4):255–295

    Article  CAS  Google Scholar 

  49. Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Mu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Mu, R. (2017). Modulating the Structure and Reactivity of Pt–Ni Catalysts. In: Construction and Reactivity of Pt-Based Bi-component Catalytic Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55244-5_4

Download citation

Publish with us

Policies and ethics