Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 216 Accesses

Abstract

The rapid consumptions of coal, oil, and other fossil energies have resulted in globally environmental pollution and climate warming issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ertl G et al (2008) Handbook of Heterogeneous Catalysis, 2nd edn, Wiley-Vch

    Google Scholar 

  2. Rothenberg G (2008) Catalysis: concepts and green applications. Wiley-Vch

    Google Scholar 

  3. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35(7):583–592

    Article  CAS  Google Scholar 

  4. Goodman DW, Chen MS (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39(10):739–746

    Article  Google Scholar 

  5. Van Santen RA (2009) Complementary structure sensitive and insensitive catalytic relationships. Acc Chem Res 42(1):57–66

    Article  Google Scholar 

  6. Bond GC (1991) Supported metal-catalysts—some unsolved problems. Chem Soc Rev 20(4):441–475

    Article  CAS  Google Scholar 

  7. Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A-gen 222(1–2):427–437

    Article  CAS  Google Scholar 

  8. Hutchings GJ, Haruta M (2005) A golden age of catalysis: a perspective. Appl Catal A Gen 291(1–2):2–5

    Article  CAS  Google Scholar 

  9. Haruta M (1997) Size- and support-dependency in the catalysis of gold. Catal Today 36(1):153–166

    Article  CAS  Google Scholar 

  10. Xu Q et al (2009) Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. J Am Chem Soc 131(32):11302−+

    Google Scholar 

  11. Goodman DW, Chen MS (2004) The structure of catalytically active gold on titania. Science 306(5694):252–255

    Article  Google Scholar 

  12. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  Google Scholar 

  13. Kiely CJ et al (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321(5894):1331–1335

    Article  Google Scholar 

  14. Remediakis IN, Lopez N, Norskov JK (2005) CO oxidation on rutile-supported au nanoparticles. Angew Chem Int Edit 44(12):1824–1826

    Article  CAS  Google Scholar 

  15. Lemire C et al (2004) Do quantum size effects control co adsorption on gold nanoparticles? Angew Chem Int Edit 43(1):118–121

    Article  Google Scholar 

  16. Besenbacher F et al (2010) Size threshold in the dibenzothiophene adsorption on MoS2 nanoclusters. ACS Nano 4(8):4677–4682

    Article  Google Scholar 

  17. Besenbacher F et al (2007) Size-dependent structure of MoS2 nanocrystals. Nat Nanotechnol 2(1):53–58

    Article  Google Scholar 

  18. Lauritsen JV et al (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy. J Catal 224(1):94–106

    Article  CAS  Google Scholar 

  19. Besenbacher F et al (2000) Atomic-scale structure of single-layer MoS2 nanoclusters. Phys Rev Lett 84(5):951–954

    Article  Google Scholar 

  20. Lambert RM et al (2008) Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature 454(7207):981–983

    Article  Google Scholar 

  21. Boyen HG et al (2002) Oxidation-resistant gold-55 clusters. Science 297(5586):1533–1536

    Article  CAS  Google Scholar 

  22. Schmid G (2008) The relevance of shape and size of Au55 clusters. Chem Soc Rev 37(9):1909–1930

    Article  CAS  Google Scholar 

  23. Anderson SL et al (2009) Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326(5954):826–829

    Article  Google Scholar 

  24. Anderson SL et al (2010) Size-dependent oxygen activation efficiency over Pdn/TiO2(110) for the CO oxidation reaction. J Am Chem Soc 132(38):13097–13099

    Article  Google Scholar 

  25. Castleman AW et al (2009) Complementary active sites cause size-selective reactivity of aluminum cluster anions with water. Science 323(5913):492–495

    Article  Google Scholar 

  26. Weiss PS et al (2011) Soft-landing deposition of Al17− on a hydroxyl-terminated self-assembled monolayer. J Phys Chem C 115(13):5373–5377

    Article  Google Scholar 

  27. Leuchtner RE, Harms AC, Castleman AW (1991) Aluminum cluster reactions. J Chem Phys. 94(2):1093–1101

    Article  CAS  Google Scholar 

  28. Hensen EJM, Ligthart DAJM, van Santen RA (2011) Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J Catal 280(2):206–220

    Article  Google Scholar 

  29. Park JY et al (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10(7):2709–2713

    Article  Google Scholar 

  30. Roduner E et al (2006) A small paramagnetic platinum cluster in an nay zeolite: characterization and hydrogen adsorption and desorption. J Phys Chem B. 110(5):2013–2023

    Article  Google Scholar 

  31. Niesz K, Grass M, Somorjai GA (2005) Precise control of the Pt nanoparticle size by seeded growth using EO13PO30EO13 triblock copolymers as protective agents. Nano Lett 5(11):2238–2240

    Article  CAS  Google Scholar 

  32. Shao-Horn Y et al (2009) Pt nanoparticle stability in PEM fuel cells: influence of particle size distribution and crossover hydrogen. Energy Environ Sci 2(8):865–871

    Article  Google Scholar 

  33. Somorjai GA, Li YM (2011) Impact of surface chemistry. Proc Natl Acad Sci 108(3):917–924

    Article  CAS  Google Scholar 

  34. Somorjai GA (2000) The development of molecular surface science and the surface science of catalysis: berkeley contribution. J Phys Chem B. 104(14):2969–2979

    Article  CAS  Google Scholar 

  35. Yates JT, Campbell CT (2011) Surface chemistry: key to control and advance myriad technologies. Proc Natl Acad Sci 108(3):911–916

    Article  CAS  Google Scholar 

  36. Sinfelt JH (2002) Role of surface science in catalysis. Surf Sci 500(1–3):923–946

    Article  CAS  Google Scholar 

  37. Ertl, G. (1980) surface science and catalysis—studies on the mechanism of ammonia-synthesis—the Emmett, P.H. award address. Catal Rev 21(2):201–223

    Google Scholar 

  38. Ertl G (2008) Reactions at surfaces: from atoms to complexity (nobel lecture). Angew Chem Int Edit 47(19):3524–3535

    Article  CAS  Google Scholar 

  39. Spencer ND, Schoonmaker RC, Somorjai GA (1981) Structure sensitivity in the iron single-crystal catalyzed synthesis of ammonia. Nature 294(5842):643–644

    Article  CAS  Google Scholar 

  40. Spencer ND, Schoonmaker RC, Somorjai GA (1982) Iron single-crystals as ammonia-synthesis catalysts—effect of surface-structure on catalyst activity. J Catal 74(1):129–135

    Article  CAS  Google Scholar 

  41. Somorjai GA (1994) The surface science of heterogeneous catalysis. Surf Sci 299(1–3):849–866

    Article  Google Scholar 

  42. Somorjai GA, Kim CM, Knight C (1992) Building of complex catalysts on single-crystal surfaces. Surf Sci Catal 482:108–129

    Article  CAS  Google Scholar 

  43. Strongin DR et al (1987) The importance of C7 sites and surface-roughness in the ammonia-synthesis reaction over iron. J Catal 103(1):213–215

    Article  CAS  Google Scholar 

  44. Mittasch A (1950) Early studies of multicomponent catalysts. Adv Catal 2:81–104

    Google Scholar 

  45. Bozso F et al (1977) Interaction of nitrogen with iron surfaces.1. Fe(100) and Fe(111) J Catal 49(1):18–41

    Google Scholar 

  46. Bozso F, Ertl G, Weiss M (1977) Interaction of nitrogen with iron surfaces.2. Fe(110). J Catal. 50(3):519–529

    Google Scholar 

  47. Emmett PH, Brunauer S (1934) The Adsorption of Nitrogen by Iron Synthetic Ammonia Catalysts. J Am Chem Soc 56:35–41

    Article  CAS  Google Scholar 

  48. Lee I, Zaera F (2005) Selectivity in platinum-catalyzed cis-trans carbon-carbon double-bond isomerization. J Am Chem Soc 127(35):12174–12175

    Article  CAS  Google Scholar 

  49. Zaera F et al (2008) Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proc Natl Acad Sci 105(40):15241–15246

    Article  Google Scholar 

  50. Somorjai GA, Li YM (2010) nanoscale advances in catalysis and energy applications. Nano Lett 10(7):2289–2295

    Article  Google Scholar 

  51. Somorjai GA, Park JY (2008) Molecular factors of catalytic selectivity. Angew Chem Int Edit 47(48):9212–9228

    Article  CAS  Google Scholar 

  52. Somorjai GA et al (2007) Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett 7(10):3097–3101

    Article  Google Scholar 

  53. Somorjai GA, Rupprechter G (1999) Molecular studies of catalytic reactions on crystal surfaces at high pressures and high temperatures by infrared-visible Sum Frequency Generation (SFG) surface vibrational spectroscopy. J Phys Chem B 103(10):1623–1638

    Article  CAS  Google Scholar 

  54. Englisch M, Jentys A, Lercher JA (1997) Structure sensitivity of the hydrogenation of crotonaldehyde over Pt/SiO2 and Pt/TiO2. J Catal 166(1):25–35

    Article  CAS  Google Scholar 

  55. Somorjai GA et al (2006) Sum frequency generation vibrational spectroscopic and high-pressure scanning tunneling microscopic studies of benzene hydrogenation on Pt(111). J Am Chem Soc 128(39):12810–12816

    Article  Google Scholar 

  56. Somorjai GA, Bratlie KM, Kliewer CJ (2006) Structure effects of benzene hydrogenation studied with sum frequency generation vibrational spectroscopy and kinetics on Pt(111) and Pt(100) single-crystal surfaces. J Phys Chem B. 110(36):17925–17930

    Article  Google Scholar 

  57. Yang PD et al (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Edit 45(46):7824–7828

    Article  Google Scholar 

  58. Ahmadi TS et al (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924–1926

    Article  CAS  Google Scholar 

  59. Wang ZL, Ahmad TS, ElSayed MA (1997) Steps, edges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf Sci 380(2–3):302–310

    Article  CAS  Google Scholar 

  60. El-Sayed MA, Narayanan R (2004) Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett 4(7):1343–1348

    Article  Google Scholar 

  61. Xia Y et al (2009) Shape-Controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Edit 48(1):60–103

    Article  CAS  Google Scholar 

  62. Xie XW et al (2009) Low-Temperature Oxidation of CO Catalysed by Co3O4 Nanorods. Nature 458(7239):746–749

    Article  CAS  Google Scholar 

  63. Xie XW, Shen WJ (2009) Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance. Nanoscale 1(1):50–60

    Article  CAS  Google Scholar 

  64. Norskov JK et al (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46

    Article  CAS  Google Scholar 

  65. Henry CR (1998) Surface studies of supported model catalysts. Surf Sci Rep 31(7–8):235–325

    Google Scholar 

  66. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions—Group-8 noble-metals supported on TiO2. J Am Chem Soc 100(1):170–175

    Article  CAS  Google Scholar 

  67. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20(11):389–394

    Article  CAS  Google Scholar 

  68. Newton MA et al (2007) Dynamic in situ observation of rapid size and shape change of supported Pd nanoparticles during CO/NO cycling. Nat Mater 6(7):528–532

    Article  CAS  Google Scholar 

  69. Fu Q, Wagner T (2007) Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep 62(11):431–498

    Article  CAS  Google Scholar 

  70. Goodman DW, Chen MS (2008) Catalytically active gold on ordered titania supports. Chem Soc Rev 37(9):1860–1870

    Article  Google Scholar 

  71. Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68(10):2772–2777

    Article  CAS  Google Scholar 

  72. Blyholde G, Sheets R (1970) Platinum-carbon stretching frequency for chemisorbed carbon monoxide. J Phys Chem 74(25):4335–4338

    Article  Google Scholar 

  73. Hensen EJM, Ligthart DAJM, van Santen RA (2011) Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew Chem Int Edit 50(23):5306–5310

    Article  Google Scholar 

  74. Somorjai GA et al (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ Ambient-Pressure X-ray photoelectron spectroscopy. Angew Chem Int Edit 47(46):8893–8896

    Article  Google Scholar 

  75. Rodriguez JA et al (2007) activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318(5857):1757–1760

    Article  CAS  Google Scholar 

  76. Yao YX et al (2010) growth and characterization of Two-dimensional FeO nanoislands supported on Pt(111). J Phys Chem C 114:17069–17079

    Article  CAS  Google Scholar 

  77. Fu Q et al (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328(5982):1141–1144

    Article  CAS  Google Scholar 

  78. Surnev S et al (2002) Reversible dynamic behavior in catalyst systems: oscillations of structure and morphology. Phys Rev Lett 89(24)

    Google Scholar 

  79. Chorkendorff I et al (2007) Identification of active edge sites for electrochemical H2 evolution from MoS2 Nanocatalysts. Science 317(5834):100–102

    Article  Google Scholar 

  80. Nishihata Y et al (2002) Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 418(6894):164–167

    Article  CAS  Google Scholar 

  81. Tanaka H et al (2006) Intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control. Catal Today 117(1–3):321–328

    Article  CAS  Google Scholar 

  82. Guilhaume, N. and M. Primet (1997) Three-way catalytic activity and oxygen storage capacity of perovskite LaMn0.976Rh0.024O3. J Catal 165(2):197–204

    Google Scholar 

  83. Pan XL et al (2007) Enhanced ethanol production inside carbon-nanotube reactors containing catalytic particles. Nat Mater 6(7):507–511

    Article  CAS  Google Scholar 

  84. Chen W, Pan XL, Bao XH (2007) Tuning of redox properties of iron and iron oxides via encapsulation within carbon nanotubes. J Am Chem Soc 129(23):7421–7426

    Article  CAS  Google Scholar 

  85. Li YG et al (2011) MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 133(19):7296–7299

    Article  CAS  Google Scholar 

  86. Nakamura J et al (2009) Enhanced electrocatalytic activity of Pt subnanoclusters on graphene nanosheet surface. Nano Lett 9(6):2255–2259

    Article  Google Scholar 

  87. Rodriguez JA, Goodman DW (1992) The nature of the metal metal bond in bimetallic surfaces. Science 257(5072):897–903

    Article  CAS  Google Scholar 

  88. Rodriguez JA (1996) Physical and chemical properties of bimetallic surfaces. Surf Sci Rep 24(7–8):225–287

    Google Scholar 

  89. Nilsson A et al (2005) The electronic structure effect in heterogeneous catalysis. Catal Lett 100(3–4):111–114

    Article  CAS  Google Scholar 

  90. Holloway S, Lundqvist BI, Norskov JK (1984) Electronic factors in catalysis. Proceedings of the eighth conference on catalysis, Springer, 1984

    Google Scholar 

  91. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376(6537):238–240

    Article  CAS  Google Scholar 

  92. Kitchin JR et al (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93(15)

    Google Scholar 

  93. Norskov JK et al (2009) Trends in CO oxidation rates for metal nanoparticles and close-packed, stepped, and kinked surfaces. J Phys Chem C 113(24):10548–10553

    Article  Google Scholar 

  94. Kibler LA et al (2005) Tuning reaction rates by lateral strain in a palladium monolayer. Angew Chem Int Edit 44(14):2080–2084

    Article  CAS  Google Scholar 

  95. Schlapka A et al (2003) Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys Rev Lett 91(1)

    Google Scholar 

  96. Alayoglu S, Eichhorn B (2008) Rh–Pt bimetallic catalysts: synthesis, characterization, and catalysis of core-shell, alloy, and monometallic nanoparticles. J Am Chem Soc 130(51):17479–17486

    Article  CAS  Google Scholar 

  97. Strasser P et al (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460

    Article  CAS  Google Scholar 

  98. Sasaki K et al (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Edit 49(46):8602–8607

    Article  CAS  Google Scholar 

  99. Zhou WP et al (2009) Improving electrocatalysts for O2 reduction by fine-tuning the Pt-support interaction: Pt monolayer on the surfaces of a Pd3Fe(111) single-crystal alloy. J Am Chem Soc 131(35):12755–12762

    Article  CAS  Google Scholar 

  100. Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25(4):255–295

    Article  CAS  Google Scholar 

  101. Mayrhofer KJJ et al (2009) Adsorbate-induced surface segregation for core-shell nanocatalysts. Angew Chem Int Edit 48(19):3529–3531

    Article  CAS  Google Scholar 

  102. Norskov JK et al (1998) Design of a surface alloy catalyst for steam reforming. Science 279(5358):1913–1915

    Article  Google Scholar 

  103. Nilekar AU et al (2010) Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles. J Am Chem Soc 132(21):7418–7428

    Article  CAS  Google Scholar 

  104. Su HY, Bao XH, Li WX (2008) Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations. J Chem Phys 128(19):194707

    Article  Google Scholar 

  105. Chen JG, Menning CA, Zellner MB (2008) Monolayer bimetallic surfaces: experimental and theoretical studies of trends in electronic and chemical properties. Surf Sci Rep 63(5):201–254

    Article  CAS  Google Scholar 

  106. Stamenkovic VR et al (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497

    Article  CAS  Google Scholar 

  107. Chen S et al (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125

    Article  CAS  Google Scholar 

  108. Nilekar AU, Mavrikakis M (2008) Improved oxygen reduction reactivity of platinum monolayers on transition metal surfaces. Surf Sci 602(14):L89–L94

    Article  CAS  Google Scholar 

  109. Chen S et al (2008) Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819

    Article  CAS  Google Scholar 

  110. Knudsen J et al (2007) A Cu/Pt near-surface alloy for water-gas shift catalysis. J Am Chem Soc 129(20):6485–6490

    Article  CAS  Google Scholar 

  111. Zhang J et al (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Mu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Mu, R. (2017). Introduction. In: Construction and Reactivity of Pt-Based Bi-component Catalytic Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55244-5_1

Download citation

Publish with us

Policies and ethics