Some Observations on the Physics of Stringed Instruments

  • Nicholas GiordanoEmail author
Part of the Springer Handbooks book series (SHB)


We provide a general introduction to stringed instruments, focusing on the piano, guitar, and violin. These are representative of instruments in which the strings are excited by striking (the piano), plucking (the guitar), and bowing (the violin). We begin by discussing, in a general way, the strings and soundboards, and how these couple to the surrounding air to generate sound. Important features specific to these instruments are then discussed, with particular attention to the different ways the strings are set into motion, key differences in the way the soundboards vibrate, and the effects of these differences on the resulting musical tones.



I am grateful to A. Askenfelt, R. Bader, A. Chaigne, T. Rossing, and G. Weinreich for many enlightening discussions and to the authors who have graciously allowed me to show figures with their results. I also thank R. Bader for inviting me to contribute to this chapter.


  1. 6.1
    L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985)Google Scholar
  2. 6.2
    N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1991)CrossRefGoogle Scholar
  3. 6.3
    R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin 2008)Google Scholar
  4. 6.4
    R.M. French: Engineering the Guitar (Springer, New York 2009)CrossRefGoogle Scholar
  5. 6.5
    T.D. Rossing (Ed.): The Science of String Instruments (Springer, New York 2010)Google Scholar
  6. 6.6
    N.J. Giordano: Physics of the Piano (Oxford University Press, Oxford 2010)zbMATHGoogle Scholar
  7. 6.7
    A. Chaigne, J. Kergomard: Acoustique des Instruments de Musique (Belin, Paris 2010)Google Scholar
  8. 6.8
    A. Chaigne: On the use of finite differences for musical synthesis. Application to plucked string instruments, J. Acoustique 5, 181–211 (1992)Google Scholar
  9. 6.9
    A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. Physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95, 1112–1118 (1994)CrossRefGoogle Scholar
  10. 6.10
    A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. II. Comparisons with measurements and systematic exploration of some hammer-string parameters, J. Acoust. Soc. Am. 95, 1631–1640 (1994)CrossRefGoogle Scholar
  11. 6.11
    J. Chabassier, A. Chaigne, P. Joly: Modeling and simulation of a grand piano, J. Acoust. Soc. Am. 134, 648–665 (2013)CrossRefGoogle Scholar
  12. 6.12
    N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102, 1159–1168 (1997)CrossRefGoogle Scholar
  13. 6.13
    W. Strutt (Lord Rayleigh): Theory of Sound (Dover, New York 1945)Google Scholar
  14. 6.14
    E. Bechache, A. Chaigne, G. Deveraux, P. Joly: Numerical simulation of a guitar, Comput. Struct. 83, 107–126 (2005)MathSciNetCrossRefGoogle Scholar
  15. 6.15
    A. Mamou-Mani, J. Frelat, C. Besnainou: Numerical simulation of a piano soundboard under downbearing, J. Acoust. Soc. Am. 123, 2401–2406 (2008)CrossRefGoogle Scholar
  16. 6.16
    A. Mamou-mani, J. Frelat, C. Besaniou: Prestressed soundboards: Analytical approach using simple systems including geometric nonlinearity, Acta Acoust. united Acust. 95, 915–928 (2009)CrossRefGoogle Scholar
  17. 6.17
    A. Chaigne, B. Cotté, R. Viggiano: Dynamical properties of piano soundboards, J. Acoust. Soc. Am. 133, 2456–2466 (2013)CrossRefGoogle Scholar
  18. 6.18
    P.M. Morse, K.U. Ingard: Theoretical Acoustics (McGraw-Hill, Princeton 1968)Google Scholar
  19. 6.19
    D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95, 2313–2319 (1994)CrossRefGoogle Scholar
  20. 6.20
    D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRefGoogle Scholar
  21. 6.21
    N. Giordano, M. Jiang: Physical modeling of the piano, Eur. J. Appl. Signal Process. 7, 926–933 (2004)Google Scholar
  22. 6.22
    H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part I. Piano hammers and tonal effects, J. Acoust. Soc. Am. 99, 3286–3296 (1996)CrossRefGoogle Scholar
  23. 6.23
    H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part II. Piano structure, J. Acoust. Soc. Am. 100, 695–708 (1996)CrossRefGoogle Scholar
  24. 6.24
    H.A. Conklin Jr.: Design and tone in the mechanoacoustic piano. Part III. Piano and scale design, J. Acoust. Soc. Am. 100, 1286–1298 (1996)CrossRefGoogle Scholar
  25. 6.25
    M. French: Technology of the Guitar (Springer, New York 2012)CrossRefGoogle Scholar
  26. 6.26
    D.E. Hall: Piano string excitation in the case of small hammer mass, J. Acoust. Soc. Am. 79, 141–147 (1986)CrossRefGoogle Scholar
  27. 6.27
    D.E. Hall: Piano string excitation II: General solution for a hard narrow hammer, J. Acoust. Soc. Am. 81, 535–546 (1987)CrossRefGoogle Scholar
  28. 6.28
    D.E. Hall: Piano string excitation III: General solution for a soft narrow hammer, J. Acoust. Soc. Am. 81, 547–555 (1987)CrossRefGoogle Scholar
  29. 6.29
    D.E. Hall, A. Askenfelt: Piano string excitation V: Spectra for real hammers and strings, J. Acoust. Soc. Am. 83, 1627–1638 (1987)CrossRefGoogle Scholar
  30. 6.30
    D.E. Hall: Piano string excitation VI: Nonlinear modeling, J. Acoust. Soc. Am. 92, 95–105 (1992)CrossRefGoogle Scholar
  31. 6.31
    T. Yanagisawa, K. Nakamura, H. Aiko: Experimental study on force-time curve during the contact between hammer and piano string, J. Acoust. Soc. Jpn. 37, 627–632 (1981)Google Scholar
  32. 6.32
    T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer, Trans. Musical Acoust. Tech. Group Meet. Acoust. Soc. Jpn. 1, 14–17 (1982)Google Scholar
  33. 6.33
    T. Yanagisawa, K. Nakamura: Dynamic compression characteristics of piano hammer felt, J. Acoust. Soc. Jpn. 40, 725–729 (1984)Google Scholar
  34. 6.34
    A. Stulov: Hysteretic model of the grand piano hammer felt, J. Acoust. Soc. Am. 97, 2577–2585 (1995)CrossRefGoogle Scholar
  35. 6.35
    N. Giordano, J.P. Winans II: Piano hammers and their force compression characteristics: Does a power law make sense?, J. Acoust. Soc. Am. 107, 2248–2255 (2000)CrossRefGoogle Scholar
  36. 6.36
    H. Fletcher, E.D. Blackham, R. Stratton: Quality of piano tones, J. Acoust. Soc. Am. 34, 749–761 (1962)CrossRefGoogle Scholar
  37. 6.37
    N. Giordano: Evolution of music wire and its impact on the development of the piano, Proc. Meet. Acoust. 12, 035002 (2011)CrossRefGoogle Scholar
  38. 6.38
    O.L. Railsback: Scale temperament as applied to piano tuning, J. Acoust. Soc. Am. 9, 274 (1938)CrossRefGoogle Scholar
  39. 6.39
    O.L. Railsback: A study of the tuning of pianos, J. Acoust. Soc. Am. 10, 86 (1938)CrossRefGoogle Scholar
  40. 6.40
    O.H. Schuck, R.W. Young: Observations on the vibration of piano strings, J. Acoust. Soc. Am. 15, 1–11 (1943)CrossRefGoogle Scholar
  41. 6.41
    N. Giordano: Explaining the Railsback stretch in terms of the inharmonicity of piano tones and sensory dissonance, J. Acoust. Soc. Am. 138, 2359–2366 (2015)CrossRefGoogle Scholar
  42. 6.42
    G. Weinreich: Coupled piano strings, J. Acoust. Soc. Am. 62, 1474–1484 (1977)CrossRefGoogle Scholar
  43. 6.43
    N. Giordano: Mechanical impedance of a piano soundboard, J. Acoust. Soc. Am. 103, 2128–2133 (1998)CrossRefGoogle Scholar
  44. 6.44
    W.M. Hartmann: Signals, Sound and Sensation (AIP, Woodbury 1997)Google Scholar
  45. 6.45
    J.G. Roederer: Introduction to the Physics and Psychophysics of Music (Springer, New York 2008)Google Scholar
  46. 6.46
    N.H. Fletcher: Physics and Music (Heinemann Educational Australia, Port Melbourne 1976)Google Scholar
  47. 6.47
    B.E. Richardson, G.W. Roberts: The adjustment of mode frequencies in a guitar: A study by means of holographic interferometry and finite element analysis. In: Proc. SMAC 83. R. Swedish Acad. Music, Stockholm (1985) pp. 285–302Google Scholar
  48. 6.48
    M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Coupled modes of the resonance box of the guitar, J. Acoust. Soc. Am. 111, 2284–2292 (2002)CrossRefGoogle Scholar
  49. 6.49
    G. Derveaux, A. Chaigne, P. Joly, E. Bécache: Time-domain simulation of a guitar: Model and method, J. Acoust. Soc. Am. 114, 3368–3383 (2003)CrossRefGoogle Scholar
  50. 6.50
    J.C. Schelleng: The bowed string and the player, J. Acoust. Soc. Am. 53, 26–41 (1973)CrossRefGoogle Scholar
  51. 6.51
    K. Guettler, A. Askenfelt: Acceptance limits for the duration of pre-Helmholtz transients in bowed string attacks, J. Acoust. Soc. Am. 101, 2903–2913 (1998)CrossRefGoogle Scholar
  52. 6.52
    K. Guettler: On the creation of the Helmholtz motion in bowed strings, Acta Acoust. united Acust. 88, 970–985 (2002)Google Scholar
  53. 6.53
    C.M. Hutchins: Plate tuning for the violin maker, J. Catgut Acoust. Soc. 39, 25–32 (1983)Google Scholar
  54. 6.54
    C.M. Hutchins: Note for the violin maker in free plate mode tuning and plate stiffness, J. Catgut Acoust. Soc. 1(II), 25–30 (1989)Google Scholar
  55. 6.55
    C.M. Hutchins, A.S. Hopping, F.A. Saunders: Subharmonics and plate tap tones in violin acoustics, J. Acoust. Soc. Am. 32, 1443–1449 (1960)CrossRefGoogle Scholar
  56. 6.56
    G. Bissinger, C.M. Hutchins: Evidence for the coupling between plate and enclosed air vibrations in violins, J. Catgut Acoust. Soc. 39, 7–14 (1983)Google Scholar
  57. 6.57
    E.V. Jansson: Admittance measurements of 25 high quality violins, Acta Acoust. united Acust. 83, 337–341 (1997)Google Scholar
  58. 6.58
    E.V. Jansson: Acoustics for Violin and Guitar Makers, (2002)
  59. 6.59
    C. Fritz, J. Curtin, J. Poitevineau, P. Morrel-Samuels, F.-C. Tao: Player preferences amoung new and old violins, Proc. Nat. Acad. Sci. 109, 760–763 (2012)CrossRefGoogle Scholar
  60. 6.60
    J. Woodhouse, P.M. Galluzzo: The bowed string as we know it today, Acta Acoust. united Acust. 90, 579–589 (2004)Google Scholar
  61. 6.61
    G. Bissinger: Structural acoustics of good and bad violins, J. Acoust. Soc. Am. 124, 1764–1773 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Dept. of PhysicsAuburn UniversityAuburnUSA

Personalised recommendations