Computational Ethnomusicology: A Study of Flamenco and Arab-Andalusian Vocal Music

  • Nadine Kroher
  • Emilia Gómez
  • Amin Chaachoo
  • Mohamed Sordo
  • José-Miguel Díaz-Báñez
  • Francisco Gómez
  • Joaquin Mora
Part of the Springer Handbooks book series (SPRINGERHAND)

Abstract

In this chapter we approach flamenco and Arab-Andalusian vocal music through the analysis of two representative pieces. We apply a hybrid methodology consisting of audio-signal processing to describe and contrast their melodic characteristics followed by musicological analysis. The use of such computational analysis tools complements a musicological-historical study with the aim of supporting the discovery and understanding of the specific characteristics of these musical traditions, their similarities and differences, while offering solutions to more general music information retrieval (MIR) research challenges.

MIDI

musical instrument digital interface

MIR

music information retrieval

Notes

Acknowledgements

This research was partly funded by the Spanish Ministry of Economy and Competitiveness (grant TIN2012-36650), the Junta de Andalucía (grant P09-TIC-4840), the FEDER funds of the European Union and the PhD fellowship program of the Department of Information and Communication Technology (DTIC), Universitat Pompeu Fabra.

References

  1. 43.1
    M.A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, M. Slaney: Content-based music information retrieval: Current directions and future challenges, Proc. IEEE 96(4), 668–696 (2008)CrossRefGoogle Scholar
  2. 43.2
    O. Cornelis, M. Lesaffre, D. Moelants, M. Leman: Access to ethnic music: Advances and perspectives in content-based music information retrieval, Signal Process. 90(4), 1008–1031 (2010)CrossRefGoogle Scholar
  3. 43.3
    N. Orio: Music retrieval: A tutorial and review, Found. Trends Inf. Retr. 1(1), 1–90 (2006)CrossRefGoogle Scholar
  4. 43.4
    E. Gómez, P. Herrera, F. Gómez-Martin: Computational ethnomusicology: Perspectives and challenges, J. New Music Res. 42(2), 111–112 (2013)CrossRefGoogle Scholar
  5. 43.5
    I. Halmos, G. Köszegi, G. Mandler: Computational Ethnomusicology in Hungary in 1978 (Univ. of Michigan Library, Ann Arbor 1978)Google Scholar
  6. 43.6
    G. Tzanetakis, A. Kapur, W.A. Schloss, M. Wright: Computational ethnomusicology, J. Interdiscip. Music Stud. 1(2), 1–24 (2007)Google Scholar
  7. 43.7
    F. Gouyon, P. Herrera, E. Gómez, P. Cano, J. Bonada, A. Loscos, X. Amatriain, X. Serra: Content processing of music audio signals. In: Sound to Sense, Sense to Sound: A State-of-the-Art in Sound and Music Computing, ed. by P. Polotti, D. Rocchesso (Logos, Berlin 2008) pp. 83–160Google Scholar
  8. 43.8
    J. Serrà, E. Gómez, P. Herrera: Audio cover song identification and similarity: Background, approaches, evaluation, and beyond. In: Advances in Music Information Retrieval, Studies in Computational Intelligence, Vol. 274, ed. by Z. Ras, A.A. Wieczorkowska (Springer, Berlin, Heidelberg 2010) pp. 307–332CrossRefGoogle Scholar
  9. 43.9
    A.C. Gedik, B. Bozkurt: Pitch-frequency histogram-based music information retrieval for Turkish music, Signal Process. 90(4), 1049–1063 (2010)CrossRefGoogle Scholar
  10. 43.10
    S. Ness, D.R. Biró, G. Tzanetakis: Computer-assisted cantillation and chant research using content-aware web visualization tools, Multimed. Tools Appl. 48(1), 207–224 (2010)CrossRefGoogle Scholar
  11. 43.11
    J. Six, O. Cornelis, M. Leman: Tarsos, a modular platform for precise pitch analysis of western and non-western music, J. New Music Res. 42(2), 113–129 (2013)CrossRefGoogle Scholar
  12. 43.12
    P. Chordia, A. Rae: Raag recognition using pitch-class and pitch-class dyad distributions. In: Proc. ISMIR Conf (2007) pp. 431–436Google Scholar
  13. 43.13
    A. Kruspe, H. Lukashevich, J. Abesser, H. Grossmann, C. Dittmar: Automatic classification of musical pieces into global cultural areas. In: Proc. 42nd AES Int. Conf. Semant. Audio (2011)Google Scholar
  14. 43.14
  15. 43.15
    J.M. Díaz-Báñez, G. Farigu, F. Gómez, D. Rappaport, G.T. Toussaint: Similaridad y evolución en la rítmica del flamenco: Una incursión de la matemática computacional, La Gaceta de la Real Sociedad Matemática Española 8(2), 489–509 (2005)Google Scholar
  16. 43.16
    J. Mora, F. Gómez, E. Gómez, F. Escobar-Borrego, J.M. Díaz-Báñez: Characterization and melodic similarity of a cappella flamenco cantes. In: Proc. 11th Int. Soc. Music Inf. Retr. Conf. (ISMIR) (2010)Google Scholar
  17. 43.17
    N. Kroher: The Flamenco Cante: Automatic Characterization of Flamenco Singing by Analyzing Audio Recordings, Master Thesis (Universitat Pompeu Fabra, Barcelona 2013)Google Scholar
  18. 43.18
    F. Gómez, A. Pikrakis, J. Mora, J.M. Díaz-Báñez, E. Gómez: Automatic detection of ornamentation in flamenco. In: 4th Int. Workshop Mach. Learn. Music (2011)Google Scholar
  19. 43.19
    A. Pikrakis, F. Gómez, S. Oramas, J.M. Díaz-Báñez, J. Mora, F. Escobar, E. Gómez, J. Salamon: Tracking melodic patterns in flamenco singing by analyzing polyphonic music recordings. In: 13th Int. Soc. Music Inf. Retr. Conf. (ISMIR), Porto (2012)Google Scholar
  20. 43.20
    D. Wu: Simultaneous unsupervised learning of flamenco metrical structure, hypermetrical structure, and multipart structural relations. In: Proc. 14th Int. Soc. Music Inf. Retr. Conf (2013)Google Scholar
  21. 43.21
    J. Blas Vega, M. Ríos Ruiz: Diccionario Enciclopédico Ilustrado del Flamenco (Cinterco, Madrid 1988)Google Scholar
  22. 43.22
    J.L. Navarro, M. Ropero: Historia del Flamenco (Tartessos, Seville 1995)Google Scholar
  23. 43.23
    J.M. Gamboa: Una Historia del Flamenco (Espasa-Calpe, Barcelona 2005)Google Scholar
  24. 43.24
    F. Merchán Higuera: Expressive Characterization of Flamenco Singing, Master thesis (Universitat Pompeu Fabra, Barcelona 2008)Google Scholar
  25. 43.25
    R. Molina, A. Mairena: Mundo y Formas del Cante Flamenco (Librería Al-Andalus, Seville 1963)Google Scholar
  26. 43.26
    A. Chaachoo: La Música Andalusí. Al-Ála. Historia, Conceptos y Teoría Musical (Almuzara, Córdoba 2011)Google Scholar
  27. 43.27
    C. Poché: La Musique Arabo-Andalouse (Cité de la Musique/Actes Sud, Paris 1995)Google Scholar
  28. 43.28
    M. Guettat: La Musique Arabo-Andalouse. L’empreinte du Maghreb (El Ouns/Fleurs sociales, Paris 2000)Google Scholar
  29. 43.29
    M. Cortés García: Kinnas al-Haik (Centro de Documentación Musical de Andalucía, Granada 2003)Google Scholar
  30. 43.30
    E. Gómez, J. Bonada: Towards computer-assisted flamenco transcription: An experimental comparison of automatic transcription algorithms as applied to a cappella singing, Comput. Music J. 37(2), 73–90 (2013)CrossRefGoogle Scholar
  31. 43.31
    A. Klapuri, M. Davy: Signal Processing Methods for Music Transcription (Springer, New York 2006)CrossRefGoogle Scholar
  32. 43.32
    G. Tzanetakis, A. Ermolinskyi, P. Cook: Pitch histograms in audio and symbolic music information retrieval, J. New Music Res. 32(2), 143–152 (2003)CrossRefGoogle Scholar
  33. 43.33
    P. Lefranc: El Cante Jondo (Secretariado de Publicaciones de la Universidad de Sevilla, Seville 2000)Google Scholar
  34. 43.34
    B. Champigneulle: Histoire de la Musique (Presses universitaires de France, Paris 1969)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Nadine Kroher
    • 1
  • Emilia Gómez
    • 2
  • Amin Chaachoo
    • 3
  • Mohamed Sordo
    • 4
  • José-Miguel Díaz-Báñez
    • 1
  • Francisco Gómez
    • 5
  • Joaquin Mora
    • 6
  1. 1.Departamento de Matemática Aplicada IIEscuela Superior de Ingenieros, Universidad de SevillaSevillaSpain
  2. 2.Music Technology GroupUniversitat Pempeu FabraBarcelonaSpain
  3. 3.Tetouan-Asmir CenterTetuánMorocco
  4. 4.Center for Computational ScienceUniversity of MiamiCoral GablesUSA
  5. 5.Dept. of Applied MathematicsTechnical University of MadridMadridSpain
  6. 6.Departamento de Matemática Aplicada IIEscuela Superior de Ingenieros, Universidad de SevillaSevillaSpain

Personalised recommendations