Skip to main content

Part of the book series: Springer Handbooks ((SHB))

Abstract

In this chapter, the relationship between music and action is examined from two perspectives: one where individuals learn to play an instrument, and another where music induces movement in a listener. For both perspectives, we review experimental research, mostly consisting of neuroscientific studies, as well as select behavioral investigations. We first review research examining how learning to play music induces functional coupling between motor and sensory neural processes, which ultimately changes the way in which music is perceived. Next, we review research examining how certain temporal properties of music (such as the rhythm or the beat) induce motor processes in a listener, depending on or irrespective of musical training. The coupling of perceptual and motor processes underpins predictive computations that facilitate the anticipation and adaptation of one's movement to music. Such skills in turn support the capacity to coordinate one's movements with another in the context of joint musical performance. This picture emphasizes how studying the relationship between music and action will ultimately lead us to understand music's powerful social and interpersonal potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EEG:

electroencephalogram/electroencephalography

ERAN:

early right anterior negativity

ERN:

error-related negativity

ERP:

event-related potential

fMRI:

functional magnetic resonance imaging

MEG:

magnetoencephalography

MEP:

motor evoked potential

pFMC:

posterior frontomedial cortex

PMC:

premotor cortex

SMA:

supplementary motor area

SSEP:

steady-state-evoked potential

TMS:

transcranial magnetic stimulation

References

  1. B.S. Kisilevsky, S.M.J. Hains, A.-Y. Jacquet, C. Granier-Deferre, J.P. Lecanuet: Maturation of fetal responses to music, Dev. Sci. 7, 550–559 (2004)

    Article  Google Scholar 

  2. J. Phillips-Silver, L.J. Trainor: Feeling the beat: Movement influences infant rhythm perception, Science 308, 1430 (2005)

    Article  Google Scholar 

  3. M. Zentner, T. Eerola: Rhythmic engagement with music in infancy, Proc. Natl. Acad. Sci. USA 107, 5768–5773 (2010)

    Article  Google Scholar 

  4. J. Stupacher, M.J. Hove, G. Novembre, S. Schütz-Bosbach, P.E. Keller: Musical groove modulates motor cortex excitability: A TMS investigation, Brain Cogn. 82, 127–136 (2013)

    Article  Google Scholar 

  5. A. Pascual-Leone: The brain that plays music and is changed by it, Ann. N.Y. Acad. Sci. 930, 315–329 (2001)

    Article  Google Scholar 

  6. R.J. Zatorre, J.L. Chen, V.B. Penhune: When the brain plays music: Auditory-motor interactions in music perception and production, Nat. Rev. Neurosci. 8, 547–558 (2007)

    Article  Google Scholar 

  7. S.C. Herholz, R.J. Zatorre: Musical training as a framework for brain plasticity: Behavior, function, and structure, Neuron 76, 486–502 (2012)

    Article  Google Scholar 

  8. W. Prinz: A common-coding approach to perception and action. In: Relationships Between Perception and Action: Current Approaches, ed. by O. Neumann, W. Prinz (Springer, Berlin, New York 1990) pp. 167–201

    Chapter  Google Scholar 

  9. B. Hommel, J. Müsseler, G. Aschersleben, W. Prinz: The Theory of Event Coding (TEC): A framework for perception and action planning, Behav. Brain. Sci. 24, 849–878 (2001), discussion 878–937

    Article  Google Scholar 

  10. G. Rizzolatti, L. Craighero: The mirror-neuron system, Annu. Rev. Neurosci. 27, 169–192 (2004)

    Article  Google Scholar 

  11. G. Rizzolatti, C. Sinigaglia: The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations, Nat. Rev. Neurosci. 11, 264–274 (2010)

    Article  Google Scholar 

  12. D.M. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Netw. 11, 1317–1329 (1998)

    Article  Google Scholar 

  13. D.M. Wolpert, Z. Ghahramani: Computational principles of movement neuroscience, Nat. Neurosci. 3, 1212–1217 (2000)

    Article  Google Scholar 

  14. D.M. Wolpert, K. Doya, M. Kawato: A unifying computational framework for motor control and social interaction, Philos. Trans. R. Soc. Lond. B 358(1431), 593–602 (2003)

    Article  Google Scholar 

  15. P.E. Keller: Mental imagery in music performance: Underlying mechanisms and potential benefits, Ann. N.Y. Acad. Sci. 1252, 206–213 (2012)

    Article  Google Scholar 

  16. P.E. Keller, G. Novembre, J. Loehr: Musical ensemble performance: Representing self, other, and joint action outcomes. In: Hared Representations: Sensorimotor Foundations of Social Life, ed. by E. Cross, S. Obhi (Cambridge Univ. Press, Cambridge 2016)

    Google Scholar 

  17. U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: When hearing turns into playing: Movement induction by auditory stimuli in pianists, Q. J. Exp. Psychol. Sect. A 58, 1376–1389 (2005)

    Article  Google Scholar 

  18. U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: Action-effect coupling in pianists, Psychol. Res. 69, 233–241 (2005)

    Article  Google Scholar 

  19. U.C. Drost, M. Rieger, W. Prinz: Instrument specificity in experienced musicians, Q. J. Exp. Psychol. (Hove) 60, 527–533 (2007)

    Article  Google Scholar 

  20. P.E. Keller, I. Koch: Exogenous and endogenous response priming with auditory stimuli, Adv. Cogn. Psychol. 2, 269–276 (2006)

    Article  Google Scholar 

  21. P.E. Keller, I. Koch: The planning and execution of short auditory sequences, Psychon. Bull. Rev. 13, 711–716 (2006)

    Article  Google Scholar 

  22. P.E. Keller, I. Koch: Action planning in sequential skills: Relations to music performance, Q. J. Exp. Psychol. (Hove) 61, 275–291 (2008)

    Article  Google Scholar 

  23. P.E. Keller, S.B. Dalla, I. Koch: Auditory imagery shapes movement timing and kinematics: Evidence from a musical task, J. Exp. Psychol. Hum. Percept. Perform. 36, 508–513 (2010)

    Article  Google Scholar 

  24. P.Q. Pfordresher, C. Palmer: Effects of hearing the past, present, or future during music performance, Percept. Psychophys. 68, 362–376 (2006)

    Article  Google Scholar 

  25. P.Q. Pfordresher: Auditory feedback in music performance: The role of melodic structure and musical skill, J. Exp. Psychol. Hum. Percept. Perform. 31, 1331–1345 (2005)

    Article  Google Scholar 

  26. J. Haueisen, T.R. Knösche: Involuntary motor activity in pianists evoked by music perception, J. Cogn. Neurosci. 13, 786–792 (2001)

    Article  Google Scholar 

  27. A. D’Ausilio, E. Altenmüller, M. Olivetti Belardinelli, M. Lotze: Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece, Eur. J. Neurosci. 24, 955–958 (2006)

    Article  Google Scholar 

  28. M. Bangert, T. Peschel, G. Schlaug, M. Rotte, D. Drescher, H. Hinrichs, H.-J. Heinze, E. Altenmüller: Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction, Neuroimage 30, 917–926 (2006)

    Article  Google Scholar 

  29. B. Haslinger, P. Erhard, E. Altenmüller, U. Schroeder, H. Boecker, A.O. Ceballos-Baumann: Transmodal sensorimotor networks during action observation in professional pianists, J. Cogn. Neurosci. 17, 282–293 (2005)

    Article  Google Scholar 

  30. T. Hasegawa, K.-I. Matsuki, T. Ueno, Y. Maeda, Y. Matsue, Y. Konishi, N. Sadato: Learned audio-visual cross-modal associations in observed piano playing activate the left planum temporale. An fMRI study, Cogn. Brain Res. 20, 510–518 (2004)

    Article  Google Scholar 

  31. A. Lahav, E. Saltzman, G. Schlaug: Action representation of sound: Audiomotor recognition network while listening to newly acquired actions, J. Neurosci. 27, 308–314 (2007)

    Article  Google Scholar 

  32. M. Bangert, E. Altenmüller: Mapping perception to action in piano practice: A longitudinal DC-EEG study, BMC Neuroscience 4, 26 (2003)

    Article  Google Scholar 

  33. A. Engel, M. Bangert, D. Horbank, B.S. Hijmans, K. Wilkens, P.E. Keller, C. Keysers: Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer, NeuroImage 63(2), 966–978 (2012)

    Article  Google Scholar 

  34. M. Candidi, L.M. Sacheli, I. Mega, S.M. Aglioti: Somatotopic mapping of piano fingering errors in sensorimotor experts: TMS studies in pianists and visually trained musically naives, Cereb. Cortex 24, 435–443 (2014)

    Article  Google Scholar 

  35. I. Koch, P. Keller, W. Prinz: The ideomotor approach to action control: Implications for skilled performance, Int. J. Sport Exerc. Psychol. 2, 362–375 (2004)

    Article  Google Scholar 

  36. J.L. Chen, C. Rae, K.E. Watkins: Learning to play a melody: An fMRI study examining the formation of auditory-motor associations, NeuroImage 59, 1200–1208 (2012)

    Article  Google Scholar 

  37. C. Maidhof, M. Rieger, W. Prinz, S. Koelsch: Nobody is perfect: ERP effects prior to performance errors in musicians indicate fast monitoring processes, PLoS One 4, e5032 (2009)

    Article  Google Scholar 

  38. M.H. Ruiz, H.-C. Jabusch, E. Altenmüller: Detecting wrong notes in advance: Neuronal correlates of error monitoring in pianists, Cereb. Cortex 19, 2625–2639 (2009)

    Article  Google Scholar 

  39. K.A. Kiehl, P.F. Liddle, J.B. Hopfinger: Error processing and the rostral anterior cingulate: An event-related fMRI study, Psychophysiology 37, 216–223 (2000)

    Article  Google Scholar 

  40. J.G. Kerns, J.D. Cohen, A.W. MacDonald, R.Y. Cho, V.A. Stenger, C.S. Carter: Anterior cingulate conflict monitoring and adjustments in control, Science 303, 1023–1026 (2004)

    Article  Google Scholar 

  41. D.M. Wolpert, Z. Ghahramani, M.I. Jordan: An internal model for sensorimotor integration, Science 269, 1880–1882 (1995)

    Article  Google Scholar 

  42. C. Maidhof, N. Vavatzanidis, W. Prinz, M. Rieger, S. Koelsch: Processing expectancy violations during music performance and perception: An ERP study, J. Cogn. Neurosci. 22, 2401–2413 (2010)

    Article  Google Scholar 

  43. M.H. Ruiz, F. Strübing, H.-C. Jabusch, E. Altenmüller: EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician’s dystonia, NeuroImage 55, 1791–1803 (2011)

    Article  Google Scholar 

  44. J.M. Kilner, S.N. Baker, S. Salenius, V. Jousmäki, R. Hari, R.N. Lemon: Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles, J. Physiol. 516, 559–570 (1999)

    Article  Google Scholar 

  45. M. Feurra, G. Bianco, E. Santarnecchi, M. Del Testa, A. Rossi, S. Rossi: Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials, J. Neurosci. 31, 12165–12170 (2011)

    Article  Google Scholar 

  46. J.M. Kilner, K.J. Friston, C.D. Frith: The mirror-neuron system: A Bayesian perspective, Neuroreport 18, 619–623 (2007)

    Article  Google Scholar 

  47. H. Lee, U. Noppeney: Long-term music training tunes how the brain temporally binds signals from multiple senses, Proc. Natl. Acad. Sci. USA 2011, 1–10 (2011)

    Google Scholar 

  48. B. Maess, S. Koelsch, T.C. Gunter, A.D. Friederici: Musical syntax is processed in Broca’s area: An MEG study, Nat. Neurosci. 4, 540–545 (2001)

    Article  Google Scholar 

  49. S. Koelsch, W.A. Siebel: Towards a neural basis of music perception, Trends Cogn. Sci. 9, 578–584 (2005)

    Article  Google Scholar 

  50. S. Koelsch, B.-H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39, 657–663 (2002)

    Article  Google Scholar 

  51. G. Novembre, P.E. Keller: A grammar of action generates predictions in skilled musicians, Conscious Cogn. 20, 1232–1243 (2011)

    Article  Google Scholar 

  52. D. Sammler, G. Novembre, S. Koelsch, P.E. Keller: Syntax in a pianist’s hand: ERP signatures of ‘embodied’ syntax processing in music, Cortex 49, 1325–1339 (2013)

    Article  Google Scholar 

  53. R. Bianco, G. Novembre, P.E. Keller, F. Scharf, A.D. Friederici, A. Villringer, D. Sammler: Syntax in action has priority over movement selection in piano playing: An ERP study, J. Cogn. Neurosci. 28, 41–54 (2016)

    Article  Google Scholar 

  54. R. Bianco, G. Novembre, P.E. Keller, K. Seung-Goo, F. Scharf, A.D. Friederici, A. Villringer, D. Sammler: Neural networks for musical syntax in perception and in action, NeuroImage 142, 454–464 (2016)

    Article  Google Scholar 

  55. V. Krieghoff, M. Brass, W. Prinz, F. Waszak: Dissociating what and when of intentional actions, Front Hum. Neurosci. 3, 3 (2009)

    Article  Google Scholar 

  56. L. Fadiga, L. Craighero, A. D’Ausilio: Broca’s area in language, action, and music, Ann. N.Y. Acad. Sci. 1169, 448–458 (2009)

    Article  Google Scholar 

  57. F. Pulvermüller, L. Fadiga: Active perception: Sensorimotor circuits as a cortical basis for language, Nat. Rev. Neurosci. 11, 351–360 (2010)

    Article  Google Scholar 

  58. B.H. Repp: Sensorimotor synchronization: A review of the tapping literature, Psychon. Bull. Rev. 12, 969–992 (2005)

    Article  Google Scholar 

  59. B.H. Repp, Y.-H. Su: Sensorimotor synchronization: A review of recent research (2006-2012), Psychon. Bull. Rev. 20, 403–452 (2013)

    Article  Google Scholar 

  60. J.L. Chen, R.J. Zatorre, V.B. Penhune: Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms, NeuroImage 32, 1771–1781 (2006)

    Article  Google Scholar 

  61. J.L. Chen, V.B. Penhune, R.J. Zatorre: Listening to musical rhythms recruits motor regions of the brain, Cereb. Cortex 18, 2844–2854 (2008)

    Article  Google Scholar 

  62. J.L. Chen, V.B. Penhune, R.J. Zatorre: Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training, J. Cogn. Neurosci. 20, 226–239 (2008)

    Article  Google Scholar 

  63. J.A. Grahn, M. Brett: Rhythm and beat perception in motor areas of the brain, J. Cogn. Neurosci. 19, 893–906 (2007)

    Article  Google Scholar 

  64. J.A. Grahn, J.B. Rowe: Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception, J. Neurosci. 29, 7540–7548 (2009)

    Article  Google Scholar 

  65. J.A. Grahn, J.B. Rowe: Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity, Cereb. Cortex 23(4), 913–921 (2013)

    Article  Google Scholar 

  66. S. Kung, J.L. Chen, R.J. Zatorre, V.B. Penhune: Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat, J. Cogn. Neurosci. 25(3), 401–420 (2013)

    Article  Google Scholar 

  67. P. Janata, S.T. Tomic, J.M. Haberman: Sensorimotor coupling in music and the psychology of the groove, J. Exp. Psychol. Gen. 141(1), 54–75 (2012)

    Article  Google Scholar 

  68. T. Fujioka, L.J. Trainor, E.W. Large, B. Ross: Internalized timing of isochronous sounds is represented in neuromagnetic Beta oscillations, J. Neurosci. 32, 1791–1802 (2012)

    Article  Google Scholar 

  69. R. Bartolo, H. Merchant: Oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey, J. Neurosci. 35, 4635–4640 (2015)

    Article  Google Scholar 

  70. S. Nozaradan, I. Peretz, M. Missal, A. Mouraux: Tagging the neuronal entrainment to beat and meter, J. Neurosci. 31, 10234–10240 (2011)

    Article  Google Scholar 

  71. S. Nozaradan, Y. Zerouali, I. Peretz, A. Mouraux: Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat, Cereb. Cortex 25(3), 736–747 (2015), https://doi.org/10.1093/cercor/bht261

    Article  Google Scholar 

  72. S. Nozaradan, I. Peretz, P.E. Keller: Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization, Sci. Rep. 6, 20612 (2016)

    Article  Google Scholar 

  73. R.I. Schubotz: Prediction of external events with our motor system: Towards a new framework, Trends Cogn. Sci. 11, 211–218 (2007)

    Article  Google Scholar 

  74. P.E. Keller, G. Novembre, M.J. Hove: Rhythm in joint action: Psychological and neurophysiological mechanisms for real-time interpersonal coordination, Philos. Trans. R. Soc. Lond. B. Biol. Sci. (2014), https://doi.org/10.1098/rstb.2013.0394

    Article  Google Scholar 

  75. M.J. Richardson, K.L. Marsh, R.W. Isenhower, J.R.L. Goodman, R.C. Schmidt: Rocking together: Dynamics of intentional and unintentional interpersonal coordination, Hum. Mov. Sci. 26, 867–891 (2007)

    Article  Google Scholar 

  76. Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, A.L. Barabási: The sound of many hands clapping, Nature 403, 849–850 (2000)

    Article  Google Scholar 

  77. M.C.M. van der Steen, P.E. Keller: The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization, Front. Hum. Neurosci. 7, 253 (2013)

    Google Scholar 

  78. M.T. Fairhurst, P. Janata, P.E. Keller: Being and feeling in sync with an adaptive virtual partner: Brain mechanisms underlying dynamic cooperativity, Cereb. Cortex 23, 2592–2600 (2013)

    Article  Google Scholar 

  79. B.H. Repp, P.E. Keller: Sensorimotor synchronization with adaptively timed sequences, Hum. Mov. Sci. 27, 423–456 (2008)

    Article  Google Scholar 

  80. S. Kirschner, M. Tomasello: Joint music making promotes prosocial behavior in 4-year-old children, Evol. Hum. Behav. 31, 354–364 (2010)

    Article  Google Scholar 

  81. M.J. Hove, J.L. Risen: It’s all in the timing: Interpersonal synchrony increases affiliation, Soc. Cogn. 27, 949–960 (2009)

    Article  Google Scholar 

  82. S.S. Wiltermuth, C. Heath: Synchrony and cooperation, Psychol. Sci. 20, 1–5 (2009)

    Article  Google Scholar 

  83. J. Launay, R.T. Dean, F. Bailes: Synchronization can influence trust following virtual interaction, Exp. Psychol. 60, 53–63 (2012)

    Article  Google Scholar 

  84. I. Kokal, A. Engel, S. Kirschner, C. Keysers: Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – if the rhythm comes easily, PLoS One 6, e27272 (2011)

    Article  Google Scholar 

  85. P.F. Mills, M.C.M. van der Steen, B.G. Schultz, P.E. Keller: Individual differences in temporal anticipation and adaptation during sensorimotor synchronization, Timing Time Percept. 3, 13–31 (2015)

    Article  Google Scholar 

  86. N. Pecenka, P.E. Keller: The role of temporal prediction abilities in interpersonal sensorimotor synchronization, Exp. Brain Res. 211, 505–515 (2011)

    Article  Google Scholar 

  87. N. Pecenka, P.E. Keller: The relationship between auditory imagery and musical synchronization abilities in musicians. In: Proc. 7th Triennial Conf. Eur. Soc. Cog. Sci. Music (ESCOM) (2009) pp. 409–415

    Google Scholar 

  88. N. Pecenka, A. Engel, P. Keller: Neural correlates of auditory temporal predictions during sensorimotor synchronization, Front. Hum. Neurosci. 7, 1–16 (2013)

    Article  Google Scholar 

  89. K. Kornysheva, R.I. Schubotz: Impairment of auditory-motor timing and compensatory reorganization after ventral premotor cortex stimulation, PLoS One 6, e21421 (2011)

    Article  Google Scholar 

  90. F. Giovannelli, I. Innocenti, S. Rossi, A. Borgheresi, A. Ragazzoni, G. Zaccara, M.P. Viggiano, M. Cincotta: Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: A perturbational approach by rTMS, Cereb. Cortex 24, 1009–1016 (2014)

    Article  Google Scholar 

  91. M.T. Fairhurst, P. Janata, P.E. Keller: Leading the follower: An fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner, NeuroImage 84, 688–697 (2014)

    Article  Google Scholar 

  92. A.E. Cavanna, M. Trimble: The precuneus: A review of its functional anatomy and behavioural correlates, Brain 129, 564–583 (2006)

    Article  Google Scholar 

  93. N. Sebanz, G. Knoblich, W. Prinz: How two share a task: Corepresenting stimulus-response mappings, J. Exp. Psychol. Hum. Percept. Perform. 31, 1234–1246 (2005)

    Article  Google Scholar 

  94. S. Schütz-Bosbach, W. Prinz: Perceptual resonance: Action-induced modulation of perception, Trends Cogn. Sci. 11, 349–355 (2007)

    Article  Google Scholar 

  95. G. Knoblich, S. Butterfill, N. Sebanz: Psychological research on joint action: Theory and data. In: The Psychology of Learning and Motivation, ed. by B. Ross (Academic Press, Burlington 2011) pp. 59–101

    Google Scholar 

  96. P.E. Keller: Joint action in music performance. In: Enacting Intersubjectivity: A Cognitive and Social Perspective on the Study of Interactions, ed. by F. Morganti, A. Carassa, G. Riva (IOS Press, Amsterdam 2008) pp. 205–221

    Google Scholar 

  97. P.E. Keller: Ensemble performance: Interpersonal alignment of musical expression. In: Expressiveness in Music Performance: Empirical Approaches Across Styles and Cultures, ed. by D. Fabian, R. Timmers, E. Schubert (Oxford Univ. Press, Oxford 2014)

    Google Scholar 

  98. G. Novembre, P.E. Keller: A conceptual review on action-perception coupling in the musicians’ brain: What is it good for?, Front. Hum. Neurosci. 8, 1–11 (2014)

    Article  Google Scholar 

  99. P.E. Keller, G. Knoblich, B.H. Repp: Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization, Conscious Cogn. 16, 102–111 (2007)

    Article  Google Scholar 

  100. J.D. Loehr, C. Palmer: Temporal coordination between performing musicians, Q. J. Exp. Psychol. 64(11), 2153–2167 (2011)

    Article  Google Scholar 

  101. M. Ragert, T. Schroeder, P.E. Keller: Knowing too little or too much: The effects of familiarity with a co-performer’s part on interpersonal coordination in musical ensembles, Front. Psychol. 4, 368 (2013)

    Article  Google Scholar 

  102. G. Novembre, L.F. Ticini, S. Schütz-Bosbach, P.E. Keller: Distinguishing self and other in joint action. Evidence from a musical paradigm, Cereb. Cortex 22, 2894–2903 (2012)

    Article  Google Scholar 

  103. M.H. Davis: Measuring individual differences in empathy: Evidence for a multidimensional approach, J. Pers. Soc. Psychol. 44, 113–126 (1983)

    Article  Google Scholar 

  104. J.D. Loehr, D. Kourtis, C. Vesper, N. Sebanz, G. Knoblich: Monitoring individual and joint action outcomes in duet music performance, J. Cogn. Neurosci. 25, 1049–1061 (2013)

    Article  Google Scholar 

  105. G. Novembre, L.F. Ticini, S. Schutz-Bosbach, P.E. Keller: Motor simulation and the coordination of self and other in real-time joint action, Soc. Cogn. Affect Neurosci. 9, 1062–1068 (2014)

    Article  Google Scholar 

  106. N.J. Rice, E. Tunik, S.T. Grafton: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation, J. Neurosci. 26, 8176–8182 (2006)

    Article  Google Scholar 

  107. N.R. Cohen, E.S. Cross, E. Tunik, S.T. Grafton, J.C. Culham: Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach, Neuropsychologia 47, 1553–1562 (2009)

    Article  Google Scholar 

  108. C. Babiloni, P. Buffo, F. Vecchio, N. Marzano, C. Del Percio, D. Spada, S. Rossi, I. Bruni, P.M. Rossini, D. Perani: Brains ‘in concert’: Frontal oscillatory alpha rhythms and empathy in professional musicians, Neuroimage 60, 105–116 (2012)

    Article  Google Scholar 

  109. G. Novembre, D. Sammler, P.E. Keller: Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action, Neuropsychologia 89, 414–425 (2016)

    Article  Google Scholar 

  110. L.V. Hadley, G. Novembre, P.E. Keller, M.J. Pickering: Causal role of motor simulation in turn-taking behavior, J. Neurosci. 35, 16516–16520 (2015)

    Article  Google Scholar 

  111. A. D’Ausilio, G. Novembre, L. Fadiga, P.E. Keller: What can music tell us about social interaction?, Trends Cogn. Sci. 19, 1–4 (2015)

    Article  Google Scholar 

  112. G. Novembre, M. Varlet, S. Muawiyath, C.J. Stevens, P.E. Keller: The E-music box: An empirical method for exploring the universal capacity for musical production and for social interaction through music, R. Soc. Open Sci. 2, 150286 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Novembre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Novembre, G., Keller, P.E. (2018). Music and Action. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics