Music and Action

  • Giacomo NovembreEmail author
  • Peter E. Keller
Part of the Springer Handbooks book series (SHB)


In this chapter, the relationship between music and action is examined from two perspectives: one where individuals learn to play an instrument, and another where music induces movement in a listener. For both perspectives, we review experimental research, mostly consisting of neuroscientific studies, as well as select behavioral investigations. We first review research examining how learning to play music induces functional coupling between motor and sensory neural processes, which ultimately changes the way in which music is perceived. Next, we review research examining how certain temporal properties of music (such as the rhythm or the beat) induce motor processes in a listener, depending on or irrespective of musical training. The coupling of perceptual and motor processes underpins predictive computations that facilitate the anticipation and adaptation of one's movement to music. Such skills in turn support the capacity to coordinate one's movements with another in the context of joint musical performance. This picture emphasizes how studying the relationship between music and action will ultimately lead us to understand music's powerful social and interpersonal potential.




early right anterior negativity


error-related negativity


event-related potential


functional magnetic resonance imaging




motor evoked potential


posterior frontomedial cortex


premotor cortex


supplementary motor area


steady-state-evoked potential


transcranial magnetic stimulation


  1. 28.1
    B.S. Kisilevsky, S.M.J. Hains, A.-Y. Jacquet, C. Granier-Deferre, J.P. Lecanuet: Maturation of fetal responses to music, Dev. Sci. 7, 550–559 (2004)CrossRefGoogle Scholar
  2. 28.2
    J. Phillips-Silver, L.J. Trainor: Feeling the beat: Movement influences infant rhythm perception, Science 308, 1430 (2005)CrossRefGoogle Scholar
  3. 28.3
    M. Zentner, T. Eerola: Rhythmic engagement with music in infancy, Proc. Natl. Acad. Sci. USA 107, 5768–5773 (2010)CrossRefGoogle Scholar
  4. 28.4
    J. Stupacher, M.J. Hove, G. Novembre, S. Schütz-Bosbach, P.E. Keller: Musical groove modulates motor cortex excitability: A TMS investigation, Brain Cogn. 82, 127–136 (2013)CrossRefGoogle Scholar
  5. 28.5
    A. Pascual-Leone: The brain that plays music and is changed by it, Ann. N.Y. Acad. Sci. 930, 315–329 (2001)CrossRefGoogle Scholar
  6. 28.6
    R.J. Zatorre, J.L. Chen, V.B. Penhune: When the brain plays music: Auditory-motor interactions in music perception and production, Nat. Rev. Neurosci. 8, 547–558 (2007)CrossRefGoogle Scholar
  7. 28.7
    S.C. Herholz, R.J. Zatorre: Musical training as a framework for brain plasticity: Behavior, function, and structure, Neuron 76, 486–502 (2012)CrossRefGoogle Scholar
  8. 28.8
    W. Prinz: A common-coding approach to perception and action. In: Relationships Between Perception and Action: Current Approaches, ed. by O. Neumann, W. Prinz (Springer, Berlin, New York 1990) pp. 167–201CrossRefGoogle Scholar
  9. 28.9
    B. Hommel, J. Müsseler, G. Aschersleben, W. Prinz: The Theory of Event Coding (TEC): A framework for perception and action planning, Behav. Brain. Sci. 24, 849–878 (2001), discussion 878–937CrossRefGoogle Scholar
  10. 28.10
    G. Rizzolatti, L. Craighero: The mirror-neuron system, Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  11. 28.11
    G. Rizzolatti, C. Sinigaglia: The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations, Nat. Rev. Neurosci. 11, 264–274 (2010)CrossRefGoogle Scholar
  12. 28.12
    D.M. Wolpert, M. Kawato: Multiple paired forward and inverse models for motor control, Neural Netw. 11, 1317–1329 (1998)CrossRefGoogle Scholar
  13. 28.13
    D.M. Wolpert, Z. Ghahramani: Computational principles of movement neuroscience, Nat. Neurosci. 3, 1212–1217 (2000)CrossRefGoogle Scholar
  14. 28.14
    D.M. Wolpert, K. Doya, M. Kawato: A unifying computational framework for motor control and social interaction, Philos. Trans. R. Soc. Lond. B 358(1431), 593–602 (2003)CrossRefGoogle Scholar
  15. 28.15
    P.E. Keller: Mental imagery in music performance: Underlying mechanisms and potential benefits, Ann. N.Y. Acad. Sci. 1252, 206–213 (2012)CrossRefGoogle Scholar
  16. 28.16
    P.E. Keller, G. Novembre, J. Loehr: Musical ensemble performance: Representing self, other, and joint action outcomes. In: Hared Representations: Sensorimotor Foundations of Social Life, ed. by E. Cross, S. Obhi (Cambridge Univ. Press, Cambridge 2016)Google Scholar
  17. 28.17
    U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: When hearing turns into playing: Movement induction by auditory stimuli in pianists, Q. J. Exp. Psychol. Sect. A 58, 1376–1389 (2005)CrossRefGoogle Scholar
  18. 28.18
    U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: Action-effect coupling in pianists, Psychol. Res. 69, 233–241 (2005)CrossRefGoogle Scholar
  19. 28.19
    U.C. Drost, M. Rieger, W. Prinz: Instrument specificity in experienced musicians, Q. J. Exp. Psychol. (Hove) 60, 527–533 (2007)CrossRefGoogle Scholar
  20. 28.20
    P.E. Keller, I. Koch: Exogenous and endogenous response priming with auditory stimuli, Adv. Cogn. Psychol. 2, 269–276 (2006)CrossRefGoogle Scholar
  21. 28.21
    P.E. Keller, I. Koch: The planning and execution of short auditory sequences, Psychon. Bull. Rev. 13, 711–716 (2006)CrossRefGoogle Scholar
  22. 28.22
    P.E. Keller, I. Koch: Action planning in sequential skills: Relations to music performance, Q. J. Exp. Psychol. (Hove) 61, 275–291 (2008)CrossRefGoogle Scholar
  23. 28.23
    P.E. Keller, S.B. Dalla, I. Koch: Auditory imagery shapes movement timing and kinematics: Evidence from a musical task, J. Exp. Psychol. Hum. Percept. Perform. 36, 508–513 (2010)CrossRefGoogle Scholar
  24. 28.24
    P.Q. Pfordresher, C. Palmer: Effects of hearing the past, present, or future during music performance, Percept. Psychophys. 68, 362–376 (2006)CrossRefGoogle Scholar
  25. 28.25
    P.Q. Pfordresher: Auditory feedback in music performance: The role of melodic structure and musical skill, J. Exp. Psychol. Hum. Percept. Perform. 31, 1331–1345 (2005)CrossRefGoogle Scholar
  26. 28.26
    J. Haueisen, T.R. Knösche: Involuntary motor activity in pianists evoked by music perception, J. Cogn. Neurosci. 13, 786–792 (2001)CrossRefGoogle Scholar
  27. 28.27
    A. D’Ausilio, E. Altenmüller, M. Olivetti Belardinelli, M. Lotze: Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece, Eur. J. Neurosci. 24, 955–958 (2006)CrossRefGoogle Scholar
  28. 28.28
    M. Bangert, T. Peschel, G. Schlaug, M. Rotte, D. Drescher, H. Hinrichs, H.-J. Heinze, E. Altenmüller: Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction, Neuroimage 30, 917–926 (2006)CrossRefGoogle Scholar
  29. 28.29
    B. Haslinger, P. Erhard, E. Altenmüller, U. Schroeder, H. Boecker, A.O. Ceballos-Baumann: Transmodal sensorimotor networks during action observation in professional pianists, J. Cogn. Neurosci. 17, 282–293 (2005)CrossRefGoogle Scholar
  30. 28.30
    T. Hasegawa, K.-I. Matsuki, T. Ueno, Y. Maeda, Y. Matsue, Y. Konishi, N. Sadato: Learned audio-visual cross-modal associations in observed piano playing activate the left planum temporale. An fMRI study, Cogn. Brain Res. 20, 510–518 (2004)CrossRefGoogle Scholar
  31. 28.31
    A. Lahav, E. Saltzman, G. Schlaug: Action representation of sound: Audiomotor recognition network while listening to newly acquired actions, J. Neurosci. 27, 308–314 (2007)CrossRefGoogle Scholar
  32. 28.32
    M. Bangert, E. Altenmüller: Mapping perception to action in piano practice: A longitudinal DC-EEG study, BMC Neuroscience 4, 26 (2003)CrossRefGoogle Scholar
  33. 28.33
    A. Engel, M. Bangert, D. Horbank, B.S. Hijmans, K. Wilkens, P.E. Keller, C. Keysers: Learning piano melodies in visuo-motor or audio-motor training conditions and the neural correlates of their cross-modal transfer, NeuroImage 63(2), 966–978 (2012)CrossRefGoogle Scholar
  34. 28.34
    M. Candidi, L.M. Sacheli, I. Mega, S.M. Aglioti: Somatotopic mapping of piano fingering errors in sensorimotor experts: TMS studies in pianists and visually trained musically naives, Cereb. Cortex 24, 435–443 (2014)CrossRefGoogle Scholar
  35. 28.35
    I. Koch, P. Keller, W. Prinz: The ideomotor approach to action control: Implications for skilled performance, Int. J. Sport Exerc. Psychol. 2, 362–375 (2004)CrossRefGoogle Scholar
  36. 28.36
    J.L. Chen, C. Rae, K.E. Watkins: Learning to play a melody: An fMRI study examining the formation of auditory-motor associations, NeuroImage 59, 1200–1208 (2012)CrossRefGoogle Scholar
  37. 28.37
    C. Maidhof, M. Rieger, W. Prinz, S. Koelsch: Nobody is perfect: ERP effects prior to performance errors in musicians indicate fast monitoring processes, PLoS One 4, e5032 (2009)CrossRefGoogle Scholar
  38. 28.38
    M.H. Ruiz, H.-C. Jabusch, E. Altenmüller: Detecting wrong notes in advance: Neuronal correlates of error monitoring in pianists, Cereb. Cortex 19, 2625–2639 (2009)CrossRefGoogle Scholar
  39. 28.39
    K.A. Kiehl, P.F. Liddle, J.B. Hopfinger: Error processing and the rostral anterior cingulate: An event-related fMRI study, Psychophysiology 37, 216–223 (2000)CrossRefGoogle Scholar
  40. 28.40
    J.G. Kerns, J.D. Cohen, A.W. MacDonald, R.Y. Cho, V.A. Stenger, C.S. Carter: Anterior cingulate conflict monitoring and adjustments in control, Science 303, 1023–1026 (2004)CrossRefGoogle Scholar
  41. 28.41
    D.M. Wolpert, Z. Ghahramani, M.I. Jordan: An internal model for sensorimotor integration, Science 269, 1880–1882 (1995)CrossRefGoogle Scholar
  42. 28.42
    C. Maidhof, N. Vavatzanidis, W. Prinz, M. Rieger, S. Koelsch: Processing expectancy violations during music performance and perception: An ERP study, J. Cogn. Neurosci. 22, 2401–2413 (2010)CrossRefGoogle Scholar
  43. 28.43
    M.H. Ruiz, F. Strübing, H.-C. Jabusch, E. Altenmüller: EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician’s dystonia, NeuroImage 55, 1791–1803 (2011)CrossRefGoogle Scholar
  44. 28.44
    J.M. Kilner, S.N. Baker, S. Salenius, V. Jousmäki, R. Hari, R.N. Lemon: Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles, J. Physiol. 516, 559–570 (1999)CrossRefGoogle Scholar
  45. 28.45
    M. Feurra, G. Bianco, E. Santarnecchi, M. Del Testa, A. Rossi, S. Rossi: Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials, J. Neurosci. 31, 12165–12170 (2011)CrossRefGoogle Scholar
  46. 28.46
    J.M. Kilner, K.J. Friston, C.D. Frith: The mirror-neuron system: A Bayesian perspective, Neuroreport 18, 619–623 (2007)CrossRefGoogle Scholar
  47. 28.47
    H. Lee, U. Noppeney: Long-term music training tunes how the brain temporally binds signals from multiple senses, Proc. Natl. Acad. Sci. USA 2011, 1–10 (2011)Google Scholar
  48. 28.48
    B. Maess, S. Koelsch, T.C. Gunter, A.D. Friederici: Musical syntax is processed in Broca’s area: An MEG study, Nat. Neurosci. 4, 540–545 (2001)CrossRefGoogle Scholar
  49. 28.49
    S. Koelsch, W.A. Siebel: Towards a neural basis of music perception, Trends Cogn. Sci. 9, 578–584 (2005)CrossRefGoogle Scholar
  50. 28.50
    S. Koelsch, B.-H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39, 657–663 (2002)CrossRefGoogle Scholar
  51. 28.51
    G. Novembre, P.E. Keller: A grammar of action generates predictions in skilled musicians, Conscious Cogn. 20, 1232–1243 (2011)CrossRefGoogle Scholar
  52. 28.52
    D. Sammler, G. Novembre, S. Koelsch, P.E. Keller: Syntax in a pianist’s hand: ERP signatures of ‘embodied’ syntax processing in music, Cortex 49, 1325–1339 (2013)CrossRefGoogle Scholar
  53. 28.53
    R. Bianco, G. Novembre, P.E. Keller, F. Scharf, A.D. Friederici, A. Villringer, D. Sammler: Syntax in action has priority over movement selection in piano playing: An ERP study, J. Cogn. Neurosci. 28, 41–54 (2016)CrossRefGoogle Scholar
  54. 28.54
    R. Bianco, G. Novembre, P.E. Keller, K. Seung-Goo, F. Scharf, A.D. Friederici, A. Villringer, D. Sammler: Neural networks for musical syntax in perception and in action, NeuroImage 142, 454–464 (2016)CrossRefGoogle Scholar
  55. 28.55
    V. Krieghoff, M. Brass, W. Prinz, F. Waszak: Dissociating what and when of intentional actions, Front Hum. Neurosci. 3, 3 (2009)CrossRefGoogle Scholar
  56. 28.56
    L. Fadiga, L. Craighero, A. D’Ausilio: Broca’s area in language, action, and music, Ann. N.Y. Acad. Sci. 1169, 448–458 (2009)CrossRefGoogle Scholar
  57. 28.57
    F. Pulvermüller, L. Fadiga: Active perception: Sensorimotor circuits as a cortical basis for language, Nat. Rev. Neurosci. 11, 351–360 (2010)CrossRefGoogle Scholar
  58. 28.58
    B.H. Repp: Sensorimotor synchronization: A review of the tapping literature, Psychon. Bull. Rev. 12, 969–992 (2005)CrossRefGoogle Scholar
  59. 28.59
    B.H. Repp, Y.-H. Su: Sensorimotor synchronization: A review of recent research (2006-2012), Psychon. Bull. Rev. 20, 403–452 (2013)CrossRefGoogle Scholar
  60. 28.60
    J.L. Chen, R.J. Zatorre, V.B. Penhune: Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms, NeuroImage 32, 1771–1781 (2006)CrossRefGoogle Scholar
  61. 28.61
    J.L. Chen, V.B. Penhune, R.J. Zatorre: Listening to musical rhythms recruits motor regions of the brain, Cereb. Cortex 18, 2844–2854 (2008)CrossRefGoogle Scholar
  62. 28.62
    J.L. Chen, V.B. Penhune, R.J. Zatorre: Moving on time: brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training, J. Cogn. Neurosci. 20, 226–239 (2008)CrossRefGoogle Scholar
  63. 28.63
    J.A. Grahn, M. Brett: Rhythm and beat perception in motor areas of the brain, J. Cogn. Neurosci. 19, 893–906 (2007)CrossRefGoogle Scholar
  64. 28.64
    J.A. Grahn, J.B. Rowe: Feeling the beat: Premotor and striatal interactions in musicians and nonmusicians during beat perception, J. Neurosci. 29, 7540–7548 (2009)CrossRefGoogle Scholar
  65. 28.65
    J.A. Grahn, J.B. Rowe: Finding and feeling the musical beat: Striatal dissociations between detection and prediction of regularity, Cereb. Cortex 23(4), 913–921 (2013)CrossRefGoogle Scholar
  66. 28.66
    S. Kung, J.L. Chen, R.J. Zatorre, V.B. Penhune: Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat, J. Cogn. Neurosci. 25(3), 401–420 (2013)CrossRefGoogle Scholar
  67. 28.67
    P. Janata, S.T. Tomic, J.M. Haberman: Sensorimotor coupling in music and the psychology of the groove, J. Exp. Psychol. Gen. 141(1), 54–75 (2012)CrossRefGoogle Scholar
  68. 28.68
    T. Fujioka, L.J. Trainor, E.W. Large, B. Ross: Internalized timing of isochronous sounds is represented in neuromagnetic Beta oscillations, J. Neurosci. 32, 1791–1802 (2012)CrossRefGoogle Scholar
  69. 28.69
    R. Bartolo, H. Merchant: Oscillations are linked to the initiation of sensory-cued movement sequences and the internal guidance of regular tapping in the monkey, J. Neurosci. 35, 4635–4640 (2015)CrossRefGoogle Scholar
  70. 28.70
    S. Nozaradan, I. Peretz, M. Missal, A. Mouraux: Tagging the neuronal entrainment to beat and meter, J. Neurosci. 31, 10234–10240 (2011)CrossRefGoogle Scholar
  71. 28.71
    S. Nozaradan, Y. Zerouali, I. Peretz, A. Mouraux: Capturing with EEG the neural entrainment and coupling underlying sensorimotor synchronization to the beat, Cereb. Cortex 25(3), 736–747 (2015), CrossRefGoogle Scholar
  72. 28.72
    S. Nozaradan, I. Peretz, P.E. Keller: Individual differences in rhythmic cortical entrainment correlate with predictive behavior in sensorimotor synchronization, Sci. Rep. 6, 20612 (2016)CrossRefGoogle Scholar
  73. 28.73
    R.I. Schubotz: Prediction of external events with our motor system: Towards a new framework, Trends Cogn. Sci. 11, 211–218 (2007)CrossRefGoogle Scholar
  74. 28.74
    P.E. Keller, G. Novembre, M.J. Hove: Rhythm in joint action: Psychological and neurophysiological mechanisms for real-time interpersonal coordination, Philos. Trans. R. Soc. Lond. B. Biol. Sci. (2014), CrossRefGoogle Scholar
  75. 28.75
    M.J. Richardson, K.L. Marsh, R.W. Isenhower, J.R.L. Goodman, R.C. Schmidt: Rocking together: Dynamics of intentional and unintentional interpersonal coordination, Hum. Mov. Sci. 26, 867–891 (2007)CrossRefGoogle Scholar
  76. 28.76
    Z. Néda, E. Ravasz, Y. Brechet, T. Vicsek, A.L. Barabási: The sound of many hands clapping, Nature 403, 849–850 (2000)CrossRefGoogle Scholar
  77. 28.77
    M.C.M. van der Steen, P.E. Keller: The ADaptation and Anticipation Model (ADAM) of sensorimotor synchronization, Front. Hum. Neurosci. 7, 253 (2013)Google Scholar
  78. 28.78
    M.T. Fairhurst, P. Janata, P.E. Keller: Being and feeling in sync with an adaptive virtual partner: Brain mechanisms underlying dynamic cooperativity, Cereb. Cortex 23, 2592–2600 (2013)CrossRefGoogle Scholar
  79. 28.79
    B.H. Repp, P.E. Keller: Sensorimotor synchronization with adaptively timed sequences, Hum. Mov. Sci. 27, 423–456 (2008)CrossRefGoogle Scholar
  80. 28.80
    S. Kirschner, M. Tomasello: Joint music making promotes prosocial behavior in 4-year-old children, Evol. Hum. Behav. 31, 354–364 (2010)CrossRefGoogle Scholar
  81. 28.81
    M.J. Hove, J.L. Risen: It’s all in the timing: Interpersonal synchrony increases affiliation, Soc. Cogn. 27, 949–960 (2009)CrossRefGoogle Scholar
  82. 28.82
    S.S. Wiltermuth, C. Heath: Synchrony and cooperation, Psychol. Sci. 20, 1–5 (2009)CrossRefGoogle Scholar
  83. 28.83
    J. Launay, R.T. Dean, F. Bailes: Synchronization can influence trust following virtual interaction, Exp. Psychol. 60, 53–63 (2012)CrossRefGoogle Scholar
  84. 28.84
    I. Kokal, A. Engel, S. Kirschner, C. Keysers: Synchronized drumming enhances activity in the caudate and facilitates prosocial commitment – if the rhythm comes easily, PLoS One 6, e27272 (2011)CrossRefGoogle Scholar
  85. 28.85
    P.F. Mills, M.C.M. van der Steen, B.G. Schultz, P.E. Keller: Individual differences in temporal anticipation and adaptation during sensorimotor synchronization, Timing Time Percept. 3, 13–31 (2015)CrossRefGoogle Scholar
  86. 28.86
    N. Pecenka, P.E. Keller: The role of temporal prediction abilities in interpersonal sensorimotor synchronization, Exp. Brain Res. 211, 505–515 (2011)CrossRefGoogle Scholar
  87. 28.87
    N. Pecenka, P.E. Keller: The relationship between auditory imagery and musical synchronization abilities in musicians. In: Proc. 7th Triennial Conf. Eur. Soc. Cog. Sci. Music (ESCOM) (2009) pp. 409–415Google Scholar
  88. 28.88
    N. Pecenka, A. Engel, P. Keller: Neural correlates of auditory temporal predictions during sensorimotor synchronization, Front. Hum. Neurosci. 7, 1–16 (2013)CrossRefGoogle Scholar
  89. 28.89
    K. Kornysheva, R.I. Schubotz: Impairment of auditory-motor timing and compensatory reorganization after ventral premotor cortex stimulation, PLoS One 6, e21421 (2011)CrossRefGoogle Scholar
  90. 28.90
    F. Giovannelli, I. Innocenti, S. Rossi, A. Borgheresi, A. Ragazzoni, G. Zaccara, M.P. Viggiano, M. Cincotta: Role of the dorsal premotor cortex in rhythmic auditory-motor entrainment: A perturbational approach by rTMS, Cereb. Cortex 24, 1009–1016 (2014)CrossRefGoogle Scholar
  91. 28.91
    M.T. Fairhurst, P. Janata, P.E. Keller: Leading the follower: An fMRI investigation of dynamic cooperativity and leader-follower strategies in synchronization with an adaptive virtual partner, NeuroImage 84, 688–697 (2014)CrossRefGoogle Scholar
  92. 28.92
    A.E. Cavanna, M. Trimble: The precuneus: A review of its functional anatomy and behavioural correlates, Brain 129, 564–583 (2006)CrossRefGoogle Scholar
  93. 28.93
    N. Sebanz, G. Knoblich, W. Prinz: How two share a task: Corepresenting stimulus-response mappings, J. Exp. Psychol. Hum. Percept. Perform. 31, 1234–1246 (2005)CrossRefGoogle Scholar
  94. 28.94
    S. Schütz-Bosbach, W. Prinz: Perceptual resonance: Action-induced modulation of perception, Trends Cogn. Sci. 11, 349–355 (2007)CrossRefGoogle Scholar
  95. 28.95
    G. Knoblich, S. Butterfill, N. Sebanz: Psychological research on joint action: Theory and data. In: The Psychology of Learning and Motivation, ed. by B. Ross (Academic Press, Burlington 2011) pp. 59–101Google Scholar
  96. 28.96
    P.E. Keller: Joint action in music performance. In: Enacting Intersubjectivity: A Cognitive and Social Perspective on the Study of Interactions, ed. by F. Morganti, A. Carassa, G. Riva (IOS Press, Amsterdam 2008) pp. 205–221Google Scholar
  97. 28.97
    P.E. Keller: Ensemble performance: Interpersonal alignment of musical expression. In: Expressiveness in Music Performance: Empirical Approaches Across Styles and Cultures, ed. by D. Fabian, R. Timmers, E. Schubert (Oxford Univ. Press, Oxford 2014)Google Scholar
  98. 28.98
    G. Novembre, P.E. Keller: A conceptual review on action-perception coupling in the musicians’ brain: What is it good for?, Front. Hum. Neurosci. 8, 1–11 (2014)CrossRefGoogle Scholar
  99. 28.99
    P.E. Keller, G. Knoblich, B.H. Repp: Pianists duet better when they play with themselves: on the possible role of action simulation in synchronization, Conscious Cogn. 16, 102–111 (2007)CrossRefGoogle Scholar
  100. 28.100
    J.D. Loehr, C. Palmer: Temporal coordination between performing musicians, Q. J. Exp. Psychol. 64(11), 2153–2167 (2011)CrossRefGoogle Scholar
  101. 28.101
    M. Ragert, T. Schroeder, P.E. Keller: Knowing too little or too much: The effects of familiarity with a co-performer’s part on interpersonal coordination in musical ensembles, Front. Psychol. 4, 368 (2013)CrossRefGoogle Scholar
  102. 28.102
    G. Novembre, L.F. Ticini, S. Schütz-Bosbach, P.E. Keller: Distinguishing self and other in joint action. Evidence from a musical paradigm, Cereb. Cortex 22, 2894–2903 (2012)CrossRefGoogle Scholar
  103. 28.103
    M.H. Davis: Measuring individual differences in empathy: Evidence for a multidimensional approach, J. Pers. Soc. Psychol. 44, 113–126 (1983)CrossRefGoogle Scholar
  104. 28.104
    J.D. Loehr, D. Kourtis, C. Vesper, N. Sebanz, G. Knoblich: Monitoring individual and joint action outcomes in duet music performance, J. Cogn. Neurosci. 25, 1049–1061 (2013)CrossRefGoogle Scholar
  105. 28.105
    G. Novembre, L.F. Ticini, S. Schutz-Bosbach, P.E. Keller: Motor simulation and the coordination of self and other in real-time joint action, Soc. Cogn. Affect Neurosci. 9, 1062–1068 (2014)CrossRefGoogle Scholar
  106. 28.106
    N.J. Rice, E. Tunik, S.T. Grafton: The anterior intraparietal sulcus mediates grasp execution, independent of requirement to update: new insights from transcranial magnetic stimulation, J. Neurosci. 26, 8176–8182 (2006)CrossRefGoogle Scholar
  107. 28.107
    N.R. Cohen, E.S. Cross, E. Tunik, S.T. Grafton, J.C. Culham: Ventral and dorsal stream contributions to the online control of immediate and delayed grasping: A TMS approach, Neuropsychologia 47, 1553–1562 (2009)CrossRefGoogle Scholar
  108. 28.108
    C. Babiloni, P. Buffo, F. Vecchio, N. Marzano, C. Del Percio, D. Spada, S. Rossi, I. Bruni, P.M. Rossini, D. Perani: Brains ‘in concert’: Frontal oscillatory alpha rhythms and empathy in professional musicians, Neuroimage 60, 105–116 (2012)CrossRefGoogle Scholar
  109. 28.109
    G. Novembre, D. Sammler, P.E. Keller: Neural alpha oscillations index the balance between self-other integration and segregation in real-time joint action, Neuropsychologia 89, 414–425 (2016)CrossRefGoogle Scholar
  110. 28.110
    L.V. Hadley, G. Novembre, P.E. Keller, M.J. Pickering: Causal role of motor simulation in turn-taking behavior, J. Neurosci. 35, 16516–16520 (2015)CrossRefGoogle Scholar
  111. 28.111
    A. D’Ausilio, G. Novembre, L. Fadiga, P.E. Keller: What can music tell us about social interaction?, Trends Cogn. Sci. 19, 1–4 (2015)CrossRefGoogle Scholar
  112. 28.112
    G. Novembre, M. Varlet, S. Muawiyath, C.J. Stevens, P.E. Keller: The E-music box: An empirical method for exploring the universal capacity for musical production and for social interaction through music, R. Soc. Open Sci. 2, 150286 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.University College LondonLondonUK
  2. 2.MARCS Institute for Brain, Behaviour and DevelopmentWestern Sydney UniversityPenrithAustralia

Personalised recommendations