Rhythm and Beat Perception

  • Tram Nguyen
  • Aaron GibbingsEmail author
  • Jessica Grahn
Part of the Springer Handbooks book series (SHB)


From established musicians to musical novices, humans perceive temporal patterns in music and respond to them. There is much that we still do not understand, however, about how the temporal patterns of music are processed in the brain. Understanding the neural mechanisms that underlie processing of temporal sequences will help us learn why humans perceive the temporal regularities, or periodicities, in musical rhythms. Therefore, in this chapter, we discuss the latest findings in beat perception research, touching on both behavioral and neuroimaging findings from studies that have used electroencephalography (EEG ), magnetoencephalography (MEG ), functional magnetic resonance imaging (fMRI ), and transcranial magnetic stimulation (TMS ). Overall, the findings establish the importance of both auditory and motor brain areas in rhythm and beat processing. The authors also discuss the implications of beat perception research and highlight the challenges currently facing the field.






event-related field


event-related potential


functional magnetic resonance imaging




mismatch negativity


Parkinson's disease


positron emission tomography


premotor cortex


supplementary motor area


sensorimotor synchronization


steady-state-evoked potential


superior temporal gyrus


transcranial magnetic stimulation


ventrolateral prefrontal cortex


  1. 27.1
    G. Cooper, L.B. Meyer: The Rhythmic Structure of Music (Univ. Chicago Press, Chicago 1960)Google Scholar
  2. 27.2
    P.E. Keller, B.H. Repp: Staying offbeat: Sensorimotor syncopation with structured and unstructured auditory sequences, Psychol. Res. 69(4), 292–309 (2005)CrossRefGoogle Scholar
  3. 27.3
    H.H. Schulze: The detectability of local and global displacements in regular rhythmic patterns, Psychol. Res. 40, 172–181 (1978)CrossRefGoogle Scholar
  4. 27.4
    F. Apoux, E.W. Healy: A glimpsing account of the role of temporal fine structure information in speech recognition, Adv. Exp. Med. Biol. 787, 119–126 (2013)CrossRefGoogle Scholar
  5. 27.5
    R.B. Ivry: The representation of temporal information in perception and motor control, Curr. Opin. Neurobiol. 6(6), 851–857 (1996)CrossRefGoogle Scholar
  6. 27.6
    E.E. Hannon, S. Trehub: Metrical categories in infancy and adulthood, Psychol. Sci. 16(1), 48–55 (2005)CrossRefGoogle Scholar
  7. 27.7
    E.E. Hannon, L.J. Trainor: Music acquisition: Effects of enculturation and formal training on development, Trends Cogn. Sci. 11(11), 466–472 (2007)CrossRefGoogle Scholar
  8. 27.8
    G. Soley, E.E. Hannon: Infants prefer the musical meter of their own culture: A cross-cultural comparison, Dev. Psychol. 46(1), 286–292 (2010)CrossRefGoogle Scholar
  9. 27.9
    H. Honing, H. Merchant, G.P. Háden, L. Prado, R. Bartolo: Rhesus monkey (Macaca mulatta) detect rhythmic groups in music, but not the beat, PLoS ONE 12, e51369 (2012)CrossRefGoogle Scholar
  10. 27.10
    H. Merchant, H. Honing: Are non-human primates capable of rhythmic entrainment? Evidence for the gradual audiomotor evolution hypothesis, Front. Neurosci. 7, 1–8 (2014)CrossRefGoogle Scholar
  11. 27.11
    E.W. Large: Resonating to musical rhythm: Theory and experiment. In: Psychology of Time, ed. by S. Grondin (Emerald, Bingley 2008) pp. 189–231Google Scholar
  12. 27.12
    W.E. Benjamin: A theory of musical meter, Music Percept. 1(4), 355–413 (1984)CrossRefGoogle Scholar
  13. 27.13
    F. Lerdahl, R. Jackendoff: A Generative Theory of Tonal Music (MIT Press, Cambridge 1983)Google Scholar
  14. 27.14
    J. London: Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, New York 2004)CrossRefGoogle Scholar
  15. 27.15
    C. Palmer, C.L. Krumhansl: Mental representations for musical meter, J. Exp. Psychol. Hum. Percept. Perform. 16(4), 728–741 (1990)CrossRefGoogle Scholar
  16. 27.16
    D. Epstein: Shaping Time: Music, The Brain and Performance (MacMillan, New York 1995)Google Scholar
  17. 27.17
    M. Grube, T.D. Griffiths: Metrically-enhanced temporal encoding and the subjective perception of rhythmic sequences, Context 45(1), 72–79 (2009)Google Scholar
  18. 27.18
    E.W. Large, P. Fink, J.A. Kelso: Tracking simple and complex sequences, Psychol. Res. 66(1), 3–17 (2002)CrossRefGoogle Scholar
  19. 27.19
    P.J. Essens: Hierarchical organization of temporal patterns, Percept. Psychophys. 40(2), 69–73 (1986)CrossRefGoogle Scholar
  20. 27.20
    K. Sakai, O. Hikosaka, S. Miyauchi, R. Takino, T. Tamada, N.K. Iwata, M. Nielsen: Neural representation of a rhythm depends on its interval ratio, J. Neurosci. 19(22), 10074–10081 (1999)Google Scholar
  21. 27.21
    R. Parncutt: A perceptual model of pulse salience and metrical accent in musical rhythms, Music Percept. 11(4), 409–464 (1994)CrossRefGoogle Scholar
  22. 27.22
    J.A. Grahn, M. Brett: Rhythm and beat perception in motor areas of the brain, J. Cogn. Neurosci. 19(5), 893–906 (2007)CrossRefGoogle Scholar
  23. 27.23
    J.A. Grahn: Neural mechanisms of rhythm perception: Current findings and future perspectives, Top. Cogn. Sci. 4, 585–606 (2012)CrossRefGoogle Scholar
  24. 27.24
    P.J. Essens, D.J. Povel: Metrical and nonmetrical representations of temporal patterns, Percept. Psychophys. 37(1), 1–7 (1985)CrossRefGoogle Scholar
  25. 27.25
    D.J. Povel: Internal representation of simple temporal patterns, J. Exp. Psychol. Hum. Percept. Perform. 7(1), 3–18 (1981)CrossRefGoogle Scholar
  26. 27.26
    C. Drake, M.R. Jones, C. Baruch: The development of rhythmic attending in auditory sequences: Attunement, referent period, focal attending, Cognition 77(3), 251–288 (2000)CrossRefGoogle Scholar
  27. 27.27
    M.R. Jones, M. Boltz: Dynamic attending and responses to time, Psychol. Rev. 96(3), 459–491 (1989)CrossRefGoogle Scholar
  28. 27.28
    M.R. Jones, P.Q. Pfordresher: Tracking melodic events using joint accent structure, Can. J. Exp. Psychol. 51(4), 271–291 (1997)CrossRefGoogle Scholar
  29. 27.29
    D.J. Povel, H. Okkerman: Accents in equitone sequences, Percept. Psychophys. 30(6), 565–572 (1981)CrossRefGoogle Scholar
  30. 27.30
    B.H. Repp: Sensorimotor synchronization: A review of the tapping literature, Psychon. Bull. Rev. 12(6), 969–992 (2005)CrossRefGoogle Scholar
  31. 27.31
    A.D. Patel, J.R. Iversen, Y. Chen, B.H. Repp: The influence of metricality and modality on synchronization with a beat, Exp. Brain Res. 163(2), 226–238 (2005)CrossRefGoogle Scholar
  32. 27.32
    B.H. Repp: Sensorimotor synchronization and perception of timing: Effects of music training and task experience, Hum. Mov. Sci. 29(2), 200–213 (2010)CrossRefGoogle Scholar
  33. 27.33
    B.H. Repp: The embodiment of musical structure: Effects of musical context on sensorimotor synchronization with complex timing patterns. In: Common Mechanisms in Perception and Action: Attention and Performance XIX, ed. by W. Prinz, B. Hommel (Oxford Univ. Press, Oxford 2002) pp. 245–265Google Scholar
  34. 27.34
    M. Franěk, T. Radil, M. Indra: Tracking irregular acoustic patterns by finger tapping, Int. J. Psychophysiol. 6(4), 327–330 (1988)CrossRefGoogle Scholar
  35. 27.35
    C. Drake, A. Penel, E. Bigand: Tapping in time with mechanically and expressively performed music, Music Percept. 18(1), 1–13 (2000)CrossRefGoogle Scholar
  36. 27.36
    N. Oram, L.L. Cuddy: Responsiveness of Western adults to pitch-distributional information in melodic sequences, Psychol. Res. 57(2), 103–118 (1995)Google Scholar
  37. 27.37
    M.A. Schmuckler, M.G. Boltz: Harmonic and rhythmic influences on musical expectancy, Percept. Psychophys. 56(3), 313–325 (1994)CrossRefGoogle Scholar
  38. 27.38
    P. Toivanen, J.S. Snyder: Tapping to Bach: Resonance-based modeling of pulse, Music Percept. 21(1), 43–80 (2003)CrossRefGoogle Scholar
  39. 27.39
    J. Synder, C.L. Krumhansl: Tapping to ragtime: Cues to pulse finding, Music Percept. 18(4), 455–489 (2001)CrossRefGoogle Scholar
  40. 27.40
    P. Desain: A (de)composable theory of rhythm perception, Music Percept. 9(4), 439–454 (1992)CrossRefGoogle Scholar
  41. 27.41
    E.W. Large, M.R. Jones: The dynamic of attending how people track time-varying events, Psychol. Rev. 106(1), 119–159 (1999)CrossRefGoogle Scholar
  42. 27.42
    B.H. Repp: R. Doggett: Tapping to a very slow beat: A comparison of musicians and non-musicians, Music Percept. 24(4), 367–376 (2007)CrossRefGoogle Scholar
  43. 27.43
    J.A. Bailey, V.B. Penhune: Rhythm synchronization performance and auditory working memory in early- and late-trained musicians, Exp. Brain Res. 204(1), 91–101 (2010)CrossRefGoogle Scholar
  44. 27.44
    J.L. Chen, V.B. Penhune, R.J. Zatorre: Moving on time: Brain network for auditory-motor synchronization is modulated by rhythm complexity and musical training, J. Cogn. Neurosci. 20(2), 226–239 (2008)CrossRefGoogle Scholar
  45. 27.45
    M. Besson, F. Faita: An event-related potential (ERP) study of musical expectancy: Comparisons of musicians with non-musicians, J. Exp. Psychol. Hum. Percept. Perform. 21(6), 1278–1296 (1995)CrossRefGoogle Scholar
  46. 27.46
    M.L.A. Jongsma, E. Meeuwissen, P.G. Vos, R. Maes: Rhythm perception: Speeding up or slowing down affects different subcomponents of the ERP P3 complex, Biol. Psychol. 75(3), 219–228 (2007)CrossRefGoogle Scholar
  47. 27.47
    A.M. Wing, A.B. Kristofferson: Response delays and the timing of discrete motor responses, Percept. Psychophys. 14(1), 5–12 (1973)CrossRefGoogle Scholar
  48. 27.48
    P.L. Nunez, R. Srinivasan: Electric Fields of the Brain: The Neurophysics of EEG (Oxford Univ. Press, London 1981)Google Scholar
  49. 27.49
    M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila, O.V. Lounasmaa: Magnetoencephalography-theory, instrumentation and applications to noninvasive studies of the working human brain, Rev. Modern Phys. 65, 413–497 (1993)CrossRefGoogle Scholar
  50. 27.50
    E. Geiser, E. Ziegler, L. Jäncke, M. Meyer: Early electrophysiological correlates of meter and rhythm processing in music perception, Cortex 45, 93–102 (2009)CrossRefGoogle Scholar
  51. 27.51
    M.L.A. Jongsma, T. Eichele, R.Q. Quiroga, K.M. Jenks, P.W.M. Desain, H.J. Honing: Expectancy effects on omission evoked potential in musicians and non-musicians, Psychophysiology 42, 191–201 (2005)CrossRefGoogle Scholar
  52. 27.52
    P. Vuust, K.J. Pallesen, C. Bailey, T.L. van Zuijen, A. Gjedde, A. Roepstorff, L. Ostergaard: To musicians, the message is in the meter: Pre-attentive neuronal responses to incongruent rhythm are left-lateralized in musicians, Neuroimage 24, 560–564 (2005)CrossRefGoogle Scholar
  53. 27.53
    O. Ladinig, H. Honing, G.P. Haden, I. Winkler: Probing attentive and pre-attentive emergent meter in adult listeners with no extensive music training, Music Percept. 26, 377–386 (2009)CrossRefGoogle Scholar
  54. 27.54
    D. Cohen: Magnetoencephalography: Evidence of magnetic fields produced by alpha-rhythm currents, Science 161, 784–786 (1968)CrossRefGoogle Scholar
  55. 27.55
    P. Vuust, L. Ostergaard, K.J. Pallesen, C. Bailey, A. Roepstorff: Predictive of music--brain responses to rhythmic incongruity, Cortex 45(1), 80–92 (2009)CrossRefGoogle Scholar
  56. 27.56
    S.J. Kung, O.J.L. Tzeng, D.L. Hung, D.H. Wu: Dynamic allocation of attention to metrical and grouping accents in rhythmic sequences, Exp. Brain Res. 210(2), 269–282 (2011), CrossRefGoogle Scholar
  57. 27.57
    E. Geiser, P. Sandmann, L. Jäncke, M. Meyer: Refinement of metre perception – Training increases hierarchical metre processing, Eur. J. Neurosci. 32(11), 1979–1985 (2010)CrossRefGoogle Scholar
  58. 27.58
    M.L.A. Jongsma, R.Q. Quiroga, C.M. van Rijn: Rhythmic training decreases latency-jitter of omission evoked potentials (OEPs) in humans, Neurosci. Lett. 355(3), 189–192 (2004)CrossRefGoogle Scholar
  59. 27.59
    E.W. Large, J.F. Kolen: Resonance and the perception of musical meter, Connect. Sci. 6, 177–208 (1994)CrossRefGoogle Scholar
  60. 27.60
    L. Van Noorden, D. Moelants: Resonance in the perception of musical pulse, J. New Music Res. 28(1), 43–66 (1999)CrossRefGoogle Scholar
  61. 27.61
    E.W. Large, J.S. Snyder: Pulse and meter as neural resonance, Ann. N. Y. Acad. Sci. 1169, 46–57 (2009)CrossRefGoogle Scholar
  62. 27.62
    J. Bhattacharya, H. Petsche, E. Pereda: Long-range synchrony in the gamma band: Role in music perception, J. Neurosci. 21(16), 6329–6337 (2001)Google Scholar
  63. 27.63
    O. Jensen, J. Kaiser, J.P. Lachaux: Human gamma-frequency oscillations associated with attention and memory, Trends Neurosci. 30(7), 317–324 (2007)CrossRefGoogle Scholar
  64. 27.64
    R. Salmelin, M. Hämäläinen, M. Kajola, R. Hari: Functional segregation of movement-related rhythmic activity in the human brain, Neuroimage 2(4), 237–243 (1995)CrossRefGoogle Scholar
  65. 27.65
    J.R. Iversen, A.D. Patel, K. Ohgushi: Perception of rhythmic grouping depends on auditory experience, J. Acoustical Soc. Am. 124(4), 2263–2271 (2008)CrossRefGoogle Scholar
  66. 27.66
    J.S. Snyder, E.W. Large: Gamma-band activity reflects the metric structure of rhythmic tone sequences, Cogn. Brain Res. 24(1), 117–126 (2005)CrossRefGoogle Scholar
  67. 27.67
    J.A. Grahn, J.B. Rowe: Feeling the beat: Premotor and striatal interactions in musicians and non-musicians during beat processing, J. Neurosci. 29(23), 7540–7548 (2009)CrossRefGoogle Scholar
  68. 27.68
    J.P. Lachaux, P. Fonlupt, P. Kahane, L. Minotti, D. Hoffmann, O. Bertrand, M. Baciu: Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG, Hum. Brain Mapp. 28(12), 1368–1375 (2007)CrossRefGoogle Scholar
  69. 27.69
    J.M. Zumer, M.J. Brookes, C.M. Stevenson, S.T. Francis, P.G. Morris: Relating BOLD fMRI and neural oscillations through convolution and optimal linear weighting, NeuroImage 49(2), 1479–1489 (2010)CrossRefGoogle Scholar
  70. 27.70
    S. Nozaradan, I. Peretz, M. Missal, A. Mouraux: Tagging the neuronal entrainment to beat and meter, J. Neurosci. 31(28), 10234–10240 (2011)CrossRefGoogle Scholar
  71. 27.71
    S. Nozaradan, I. Peretz, A. Mouraux: Selective neuronal entrainment to the beat and meter embedded in a musical rhythm, J. Neurosci. 32(49), 17572–17581 (2012)CrossRefGoogle Scholar
  72. 27.72
    R.D. Pascual-Marqui: Review of methods for solving the EEG inverse problem, Int. J. Bioelectromag. 1, 75–86 (1999)Google Scholar
  73. 27.73
    A.M. Dale, M.I. Sereno: Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach, J. Cogn. Neurosci. 5, 162–176 (1993)CrossRefGoogle Scholar
  74. 27.74
    A.M. Dale, E. Halgren: Spatiotemporal mapping of brain activity by integration of multiple imaging modalities, Curr. Opin. Neurobiol. 11, 202–208 (2001)CrossRefGoogle Scholar
  75. 27.75
    S. Ogawa, T.M. Lee, A.R. Kay, D.W. Tank: Brain magnetic resonance imaging with contrast dependent on blood oxygenation, Proc. Natl. Acad. Sci. USA 87(24), 9868–9872 (1990)CrossRefGoogle Scholar
  76. 27.76
    R. Turner, D.L. Bihan, C.T.W. Moonen, D. Despres, J. Frank: Echo-planar time course MRI of cat brain oxygenation changes, Mag. Reson. Med. 22(1), 156–166 (1991)CrossRefGoogle Scholar
  77. 27.77
    K.K. Kwong, J.W. Belliveau, D.A. Chesler, I.E. Goldberg, R.M. Weisskoff, B.P. Poncelet, D.N. Kennedy, B.E. Hoppel, M.S. Cohen, R. Turner, H.-M. Cheng, T.J. Brady, B.R. Rosen: Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation, Proc. Natl. Acad. Sci. USA 89(12), 5675–5679 (1992)CrossRefGoogle Scholar
  78. 27.78
    H. Devlin: What is functional magnetic resonance imaging (fMRI)?, (2012)
  79. 27.79
    J.L. Chen, V.B. Penhune, R.J. Zatorre: Listening to musical rhythms recruits motor regions of the brain, Cereb. Cortex 18(12), 2844–2854 (2008)CrossRefGoogle Scholar
  80. 27.80
    J.M. Mayville, K.J. Jantzen, A. Fuchs, F.L. Steinberg, J.A.S. Kelso: Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI, Hum. Brain Mapp. 17(4), 214–229 (2002)CrossRefGoogle Scholar
  81. 27.81
    R.I. Schubotz, D.Y. von Cramon: Interval and ordinal properties of sequences are associated with distinct premotor areas, Cereb. Cortex 11(3), 210–222 (2001)CrossRefGoogle Scholar
  82. 27.82
    F. Ullén, H. Forssberg, H.H. Ehrsson: Neural networks for the coordination of the hands in time, J. Neurophysiol. 89(2), 1126–1135 (2003)CrossRefGoogle Scholar
  83. 27.83
    S. Teki, M. Grube, S. Kumar, T.D. Griffiths: Distinct neural substrates of duration-based and beat-based auditory timing, J. Neurosci. 31(10), 3805–3812 (2011)CrossRefGoogle Scholar
  84. 27.84
    E. Geiser, M. Notter, J.D. Gabrieli: A corticostriatal neural system enhances auditory perception through temporal context processing, J. Neurosci. 32(18), 6177–6182 (2012)CrossRefGoogle Scholar
  85. 27.85
    S.J. Kung, J.L. Chen, R.J. Zatorre, V.B. Penhune: Interacting cortical and basal ganglia networks underlying finding and tapping to the musical beat, J. Cogn. Neurosci. 25(3), 401–420 (2013)CrossRefGoogle Scholar
  86. 27.86
    A. Riecker, J. Kassubek, K. Groschel, W. Grodd, H. Ackermann: The cerebral control of speech tempo: Opposite relationship between speaking rate and BOLD signal changes at striatal and cerebellar structures, NeuroImage 29(1), 46–53 (2006)CrossRefGoogle Scholar
  87. 27.87
    A. Riecker, D. Wildgruber, K. Mathiak, W. Grodd, H. Ackermann: Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditory cued finger tapping: A fMRI study, NeuroImage 18(3), 731–739 (2003)CrossRefGoogle Scholar
  88. 27.88
    P. Fraisse: Rhythm and tempo. In: Psychology of Music, ed. by D. Deutsch (Academic, New York 1982) pp. 149–180CrossRefGoogle Scholar
  89. 27.89
    J.D. McAuley, M. Henry: Visual rhythms do not receive automatic auditory encoding, Atten. Percept. Psychophys. 72(5), 1377–1389 (2010)CrossRefGoogle Scholar
  90. 27.90
    G. Collier, G. Logan: Modality differences in short-term memory for rhythms, Memory Cogn. 28(4), 529–538 (2000)CrossRefGoogle Scholar
  91. 27.91
    R. Fendrich, P. Corballis: The temporal cross-capture of audition and vision, Atten. Percept. Psychophys. 63(4), 719–725 (2001)CrossRefGoogle Scholar
  92. 27.92
    B.H. Repp, A. Penel: Auditory dominance in temporal processing: New evidence from synchronization with simultaneous visual and auditory sequences, J. Exp. Psychol. Hum. Percept. Perform. 28(5), 1085–1099 (2002)CrossRefGoogle Scholar
  93. 27.93
    J.A. Grahn, M.J. Henry, J.D. McAuley: fMRI investigation of cross-modal interactions in beat perception: Audition primes vision, but not vice versa, NeuroImage 54(2), 1231–1243 (2011)CrossRefGoogle Scholar
  94. 27.94
    J.A. Grahn, M. Brett: Impairment of beat-based rhythm discrimination in Parkinson’s disease, Cortex 45(1), 54–61 (2009)CrossRefGoogle Scholar
  95. 27.95
    D. Bueti, E.V. van Dongen, V. Walsh: The role of superior temporal cortex in auditory timing, PLoS ONE 3, e2481 (2008)CrossRefGoogle Scholar
  96. 27.96
    M. Grube, K.-H. Lee, T.D. Griffiths, A.T. Barker, P.W. Woodruff: Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals, Front. Psychol. (2010), CrossRefGoogle Scholar
  97. 27.97
    M.P. Malcolm, A. Lavine, G. Kenyon, C. Massie, M. Thaut: Repetitive transcranial magnetic stimulation interrupts phase synchronization during rhythmic motor entrainment, Neurosci. Lett. 435(3), 240–245 (2008)CrossRefGoogle Scholar
  98. 27.98
    M.C. Ridding, B. Brouwer, M.A. Nordstrom: Reduced interhemispheric inhibition in musicians, Exp. Brain Res. 133(2), 249–253 (2000)CrossRefGoogle Scholar
  99. 27.99
    E.M.F. Wilson, N.J. Davey: Musical beat influences corticospinal drive to ankle flexor and extensor muscles in man, Int. J. Psychophysiol. 44(2), 177–184 (2002)CrossRefGoogle Scholar
  100. 27.100
    M. Coltheart: What has functional neuroimaging told us about the mind (so far), Cortex 42, 323–331 (2006)CrossRefGoogle Scholar
  101. 27.101
    M.P.A. Page: What can’t functional neuroimaging tell the cognitive psychologist, Cortex 42(3), 428–443 (2006)CrossRefGoogle Scholar
  102. 27.102
    I. Winkler, G.P. Haden, O. Ladinig, I. Sziller, H. Honing: Newborn infants detect the beat in music, Proc. Natl. Acad. Sci. USA 106(7), 2468–2471 (2009)CrossRefGoogle Scholar
  103. 27.103
    J. Phillips-Silver, L.J. Trainor: Feeling the beat: Movement influences infant rhythm perception, Science 308(5727), 1430 (2005)CrossRefGoogle Scholar
  104. 27.104
    I. Cross: Music, cognition, culture and evolution. In: The Biological Foundations of Music, ed. by R. Zatorre, I. Peretz (The New York Academy of Sciences, New York 2001) pp. 28–42Google Scholar
  105. 27.105
    D.W. Gerry, A.L. Faux, L.J. Trainor: Effects of Kindermusik training on infants’ rhythmic enculturation, Dev. Sci. 13(3), 545–551 (2010)CrossRefGoogle Scholar
  106. 27.106
    S.W. Keele, R. Nicoletti, R. Ivry, R.A. Pokorny: Mechanisms of perceptual timing: Beat-based or interval-based judgements?, Psychol. Res. 50, 251–256 (1989)CrossRefGoogle Scholar
  107. 27.107
    J.D. McAuley, M.R. Jones: Modeling effects of rhythmic context on perceived duration: A comparison of interval and entrainment approaches to short-interval timing, J. Exp. Psychol. Hum. Percept. Perform. 29(6), 1102–1125 (2003)CrossRefGoogle Scholar
  108. 27.108
    H. Pashler: Perception and production of brief durations: Beat-based versus interval-based timing, J. Exp. Psychol. Hum. Percept. Perform. 27(2), 485–493 (2001)CrossRefGoogle Scholar
  109. 27.109
    J.D. McAuley, G.R. Kidd: Effect of deviations from temporal expectations on tempo discrimination of isochronous tone sequences, J. Exp. Psychol. Hum. Percept. Perform. 24, 1786–1800 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.The Brain and Mind Institute, Dept. of PsychologyThe University of Western OntarioLondonCanada
  2. 2.The Brain and Mind Institute, Department of PsychologyThe University of Western Ontario, Natural Sciences CentreLondonCanada

Personalised recommendations