Skip to main content

Musical Syntax II: Empirical Perspectives

  • Chapter
Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Efforts to develop a formal characterization of musical structure are often framed in syntactic terms, sometimes but not always with direct inspiration from research on language. In Chap. 25, we present syntactic approaches to characterizing musical structure and survey a range of theoretical issues involved in developing formal syntactic theories of sequential structure in music. Such theories are often computational in nature, lending themselves to implementation and our first goal here is to review empirical research on computational modeling of musical structure from a syntactic point of view. We ask about the motivations for implementing a model and assess the range of approaches that have been taken to date. It is important to note that while a computational model may be capable of deriving an optimal structural description of a piece of music, human cognitive processing may not achieve this optimal performance, or may even process syntax in a different way. Therefore we emphasize the difference between developing an optimal model of syntactic processing and developing a model that simulates human syntactic processing. Furthermore, we argue that, while optimal models (e. g., optimal compression or prediction) can be useful as a benchmark or yardstick for assessing human performance, if we wish to understand human cognition then simulating human performance (including aspects that are nonoptimal or even erroneous) should be the priority. Following this principle, we survey research on processing of musical syntax from the perspective of computational modeling, experimental psychology and cognitive neuroscience. There exists a large number of computational models of musical syntax, but we limit ourselves to those that are explicitly cognitively motivated, assessing them in the context of theoretical, psychological and neuroscientific research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPS:

closure positive shift

DBN:

dynamic Bayesian network

DOP:

data-oriented parsing

EAN:

early anterior negativity

EEG:

electroencephalogram/electroencephalography

ELAN:

early left anterior negativity

ERAN:

early right anterior negativity

ERP:

event-related potential

fMRI:

functional magnetic resonance imaging

GOFAI:

good, old-fashioned artificial intelligence

GTTM:

generative theory of tonal music

HMM:

hidden Markov model

IC:

information content

LAN:

left anterior negativity

LPC:

late positive component

MEG:

magnetoencephalography

MOP:

maximal outerplanar graph

RAAM:

recursive auto-associative memory

RANN:

recurrent artificial neural network

RBM:

restricted Boltzmann machine

References

  1. P.N. Johnson-Laird: Mental Models (Harvard Univ. Press, Cambridge 1983)

    Google Scholar 

  2. H.C. Longuet-Higgins: Artificial intelligence – A new theoretical psychology?, Cognition 10(1–3), 197–200 (1981)

    Article  Google Scholar 

  3. H.A. Simon, C.A. Kaplan: Foundations of cognitive science. In: Foundations of Cognitive Science, ed. by M.I. Posner (MIT Press, Cambridge 1989) pp. 1–47

    Google Scholar 

  4. A. Newell, H.A. Simon: Computer science as empirical enquiry: Symbols and search, Commun. ACM 19(3), 113–126 (1976)

    Article  Google Scholar 

  5. M. Steedman: A generative grammar for jazz chord sequences, Music Percept. 2(1), 52–77 (1984)

    Article  Google Scholar 

  6. M. Steedman: The blues and the abstract truth: Music and mental models. In: Mental Models in Cognitive Science, ed. by A. Garnham, J. Oakhill (Erlbaum, Mahwah 1996) pp. 305–318

    Google Scholar 

  7. A. Clark: Learning trees from strings: A strong learning algorithm for some context-free grammars, J. Mach. Learn. Res. 14, 3537–3559 (2013)

    MathSciNet  MATH  Google Scholar 

  8. M. Rohrmeier, P. Rebuschat: Implicit learning and acquisition of music, Top. Cogn. Sci. 4(4), 525–553 (2012)

    Article  Google Scholar 

  9. N. Chomsky: Aspects of the Theory of Syntax (MIT Press, Cambridge 1965)

    Google Scholar 

  10. D. Deutsch, J. Feroe: The internal representation of pitch sequences in tonal music, Psychol. Rev. 88(6), 503–522 (1981)

    Article  Google Scholar 

  11. H.A. Simon, R.K. Sumner: Pattern in music. In: Formal Representation of Human Judgement, ed. by B. Kleinmuntz (Wiley, New York 1968) pp. 219–250

    Google Scholar 

  12. L.B. Meyer: Explaining Music: Essays and Explorations (University of Chicago Press, Chicago 1973)

    Google Scholar 

  13. E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-realisation Model (University of Chicago Press, Chicago 1990)

    Google Scholar 

  14. C. Ames: Automated composition in retrospect: 1956–1986, Leonardo 20(2), 169–185 (1987)

    Article  Google Scholar 

  15. C. Ames: The Markov process as a compositional model: A survey and tutorial, Leonardo 22(2), 175–187 (1989)

    Article  Google Scholar 

  16. J.E. Cohen: Information theory and music, Behav. Sci. 7(2), 137–163 (1962)

    Article  MathSciNet  Google Scholar 

  17. L. Hiller: Music composed with computers – A historical survey. In: The Computer and Music, ed. by H.B. Lincoln (Cornell Univ. Press, Cornell 1970) pp. 42–96

    Google Scholar 

  18. C.E. Shannon: A mathematical theory of communication, Bell Syst. Tech. J. 27(3), 379–423 (1948), and 623–656

    Article  MathSciNet  MATH  Google Scholar 

  19. M.A. Rohrmeier, S. Koelsch: Predictive information processing in music cognition. A critical review, Int. J. Psychophysiol. 83(2), 164–175 (2012)

    Article  Google Scholar 

  20. M.T. Pearce, G.A. Wiggins: Auditory expectation: The information dynamics of music perception and cognition, TopiCS Cogn. Sci. 4, 625–652 (2012)

    Article  Google Scholar 

  21. D.J.C. MacKay: Information Theory, Inference, and Learning Algorithms (Cambridge Univ. Press, Cambridge 2003)

    MATH  Google Scholar 

  22. L. Hiller, L. Isaacson: Experimental Music (McGraw–Hill, New York 1959)

    Google Scholar 

  23. L. Hiller, C. Bean: Information theory analyses of four sonata expositions, J. Music Theory 10(1), 96–137 (1966)

    Article  Google Scholar 

  24. L. Hiller, R. Fuller: Structure and information in Webern’s Symphonie, Op. 21, J. Music Theory 11(1), 60–115 (1967)

    Article  Google Scholar 

  25. R.C. Pinkerton: Information theory and melody, Sci. Am. 194(2), 77–86 (1956)

    Article  Google Scholar 

  26. J.E. Youngblood: Style as information, J. Music Theory 2, 24–35 (1958)

    Article  Google Scholar 

  27. D. Conklin, I.H. Witten: Multiple viewpoint systems for music prediction, J. New Music Res. 24(1), 51–73 (1995)

    Article  Google Scholar 

  28. M.T. Pearce: The Construction and Evaluation of Statistical Models of Melodic Structure in Music Perception and Composition, Ph.D. Thesis (London City University, London 2005)

    Google Scholar 

  29. M.T. Pearce, D. Conklin, G.A. Wiggins: Methods for combining statistical models of music. In: Computer Music Modelling and Retrieval, ed. by U.K. Wiil (Springer, Berlin, Heidelberg 2005) pp. 295–312

    Chapter  Google Scholar 

  30. D. Conklin: Prediction and Entropy of Music, Master’s dissertation (University of Calgary, Calgary 1990)

    Google Scholar 

  31. D. Conklin, J.G. Cleary: Modelling and generating music using multiple viewpoints. In: Proc. 1st Workshop AI Music, Menlo Park (1988) pp. 125–137

    Google Scholar 

  32. K. Ebcioğlu: An expert system for harmonising four–part chorales, Comput. Music J. 12(3), 43–51 (1988)

    Article  Google Scholar 

  33. R. Whorley, G. Wiggins, C. Rhodes, M.T. Pearce: Multiple viewpoint systems: Time complexity and the construction of domains for complex musical viewpoints in the harmonisation problem, J. New Music Res. 42, 237–266 (2013)

    Article  Google Scholar 

  34. M. Rohrmeier, T. Graepel: Comparing feature-based models of harmony. In: Proc. 9th Int. Symp. Comput. Music Model. Retr. (Springer, London 2012) pp. 357–370

    Google Scholar 

  35. H. Egermann, M.T. Pearce, G.A. Wiggins: McAdams: Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music, Cogn. Affect. Behav. Neurosci. 13, 533–553 (2013)

    Article  Google Scholar 

  36. N.C. Hansen, M.T. Pearce: Predictive uncertainty in auditory sequence processing, Front. Psychol. 5, 1052 (2014), https://doi.org/10.3389/fpsyg.2014.01052

    Article  Google Scholar 

  37. M.T. Pearce, M.H. Ruiz, S. Kapasi, G.A. Wiggins, J. Bhattacharya: Unsupervised statistical learning underpins computational, behavioural and neural manifestations of musical expectation, NeuroImage 50, 302–313 (2010)

    Article  Google Scholar 

  38. D. Omigie, M.T. Pearce, L. Stewart: Tracking of pitch probabilities in congenital amusia, Neuropsychologia 50, 1483–1493 (2012)

    Article  Google Scholar 

  39. D. Omigie, M.T. Pearce, V. Williamson, L. Stewart: Electrophysiological correlates of melodic processing in congenital amusia, Neuropsychologia 51, 1749–1762 (2013)

    Article  Google Scholar 

  40. M. Rohrmeier, I. Cross: Artificial grammar learning of melody is constrained by melodic inconsistency: Narmour's principles affect melodic learning, PLOS ONE 8(7), e66174 (2013)

    Article  Google Scholar 

  41. L.E. Baum, T. Petrie: Statistical inference for probabilistic functions of finite state Markov chains, Ann. Math. Stat. 37(6), 1554–1563 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  42. L.E. Baum, T. Petrie, G. Soules, N. Weiss: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains, Ann. Math. Stat. 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  43. L.R. Rabiner: A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  44. P. Mavromatis: A hidden Markov model of melody production in greek church chant, Comput. Musicol. 14, 93–112 (2005)

    Google Scholar 

  45. P. Mavromatis: HMM analysis of musical structure: Identification of hidden variables through topology-sensitive model selection. In: Mathematics and Computation in Music, Communications in Computer and Information Science, (Springer, Berlin, Heidelberg 2009) pp. 205–217

    Chapter  Google Scholar 

  46. P. Mavromatis: Exploring the rhythm of the Palestrina style. A case study in probabilistic grammar induction, J. Music Theory 56(2), 169–223 (2012)

    Article  Google Scholar 

  47. P. Mavromatis: Minimum description length modeling of musical structure, J. Math. Music 3(3), 117–136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. C. Raphael, J. Stoddard: Functional harmonic analysis using probabilistic models, Comput. Music J. 28(3), 45–52 (2004)

    Article  Google Scholar 

  49. J.P. Bello, J. Pickens: A robust mid-level representation for harmonic content in music signals. In: ISMIR, Vol. 5 (2005) pp. 304–311

    Google Scholar 

  50. K.P. Murphy: Dynamic Bayesian Networks: Representation, Inference and Learning, Doctoral Dissertation (Univ. of California, Berkeley 2002)

    Google Scholar 

  51. J.-F. Paiement, Y. Grandvalet, S. Bengio: Predictive models for music, Connect. Sci. 21, 253–272 (2009)

    Article  Google Scholar 

  52. S.A. Raczyński, S. Fukayama, E. Vincent: Melody harmonization with interpolated probabilistic models, J. New Music Res. 42(3), 223–235 (2013)

    Article  Google Scholar 

  53. D. Huron: Sweet Anticipation: Music and the Psychology of Expectation (MIT Press, Cambridge 2006)

    Google Scholar 

  54. J.R. Saffran, E.K. Johnson, R.N. Aslin, E.L. Newport: Statistical learning of tone sequences by human infants and adults, Cognition 70(1), 27–52 (1999)

    Article  Google Scholar 

  55. H. Schenker: Der Freie Satz. Neue Musikalische Theorien und Phantasien (Margada, Liège 1935)

    Google Scholar 

  56. A. Forte, S.E. Gilbert: Introduction to Schenkerian Analysis (Norton, New York 1982)

    Google Scholar 

  57. F. Lerdahl, R. Jackendoff: A Generative Theory of Tonal Music (MIT Press, Cambridge 1983)

    Google Scholar 

  58. F. Lerdahl: Tonal Pitch Space (Oxford Univ. Press, Oxford 2001)

    Google Scholar 

  59. E. Narmour: The Analysis and Cognition of Melodic Complexity: The Implication-realisation Model (University of Chicago Press, Chicago 1992)

    Google Scholar 

  60. M. Rohrmeier: A generative grammar approach to diatonic harmonic structure. In: Proc. 4th Sound Music Comput. Conf. (SMC07), ed. by C. Spyridis, A. Georgaki, G. Kouroupetroglou, C. Anagnostopoulou (2007) pp. 97–100

    Google Scholar 

  61. M. Rohrmeier: Towards a generative syntax of tonal harmony, J. Math. Music 5(1), 35–53 (2011)

    Article  Google Scholar 

  62. M. Kassler: Proving musical theorems I: The middleground of Hienrich Schenker’s theory of tonality, Technical Report no. 103, (University of Sydney, Sydney 1975)

    Google Scholar 

  63. M. Kassler: A Trinity of Essays, Ph.D. Thesis (Princeton University, Princeton 1967)

    Google Scholar 

  64. M. Kassler: Explication of the middleground of Schenker’s theory of tonality, Misc. Musicol. Adel. Stud. Music. 9, 72–81 (1977)

    Google Scholar 

  65. M. Kassler: APL applied in music theory, APL Quote Quad 18, 209–214 (1988)

    Article  Google Scholar 

  66. R.E. Frankel, S.J. Rosenschein, S.W. Smoliar: Schenker’s theory of tonal music – its explication through computational processes, Int. J. Man–Mach. Stud. 10, 121–138 (1976)

    Article  Google Scholar 

  67. R.E. Frankel, S.J. Rosenschein, S.W. Smoliar: A LISP-based system for the study of Schenkerian analysis, Comput. Humanit. 10, 21–32 (1978)

    Article  Google Scholar 

  68. S.W. Smoliar: A computer aid for Schenkerian analysis, Comput. Music J. 4, 41–59 (1980)

    Article  Google Scholar 

  69. M. Baroni: The concept of musical grammar (translated by S. Maguire with the assistance of W. Drabkin), Music Anal. 2, 175–208 (1983)

    Article  Google Scholar 

  70. M. Baroni, R. Dalmonte, C. Jacobini: Theory and analysis of European melody. In: Computer Representations and Models in Music, ed. by A. Marsden, A. Pople (Academic Press, London 1992) pp. 187–206

    Google Scholar 

  71. A. Marsden: Schenkerian analysis by computer: A proof of concept, J. New Music Res. 39, 269–289 (2010)

    Article  Google Scholar 

  72. P. Mavromatis, M. Brown: Parsing context-free grammars for music: A computational model of Schenkerian analysis. In: Proc. 8th Int. Conf. Music Percept. Cogn., Evanston (2004) pp. 414–415

    Google Scholar 

  73. A. Marsden: Representing melodic patterns as networks of elaborations, Comput. Humanit. 35, 37–54 (2001)

    Article  Google Scholar 

  74. A. Marsden: Generative structural representation of tonal music, J. New Music Res. 34, 409–428 (2005)

    Article  Google Scholar 

  75. J.D. Yust: Formal Models of Prolongation, Ph.D. Thesis (University of Washington, Washington 2006)

    Google Scholar 

  76. P.B. Kirlin: Using harmonic and melodic analyses to automate the initial stages of Schenkerian analysis. In: Proc. Int. Conf. Music Inf. Retr. (ISMIR), Kobe (2009) pp. 423–428

    Google Scholar 

  77. P.B. Kirlin: A data set for computational studies of Schenkerian analysis. In: Proc. 15th Int. Soc. Music Inf. Retr. Conf (2014) pp. 213–218

    Google Scholar 

  78. P.B. Kirlin, D.D. Jensen: Using supervised learning to uncover deep musical structure. In: Proc. 29th AAAI Conf. Artif. Intell. (2015) pp. 1770–1776

    Google Scholar 

  79. E. Narmour: Beyond Schenkerism: The Need for Alternatives in Music Analysis (University of Chicago Press, Chicago 1975)

    Google Scholar 

  80. C.L. Krumhansl: Music psychology and music theory: Problems and prospects, Music Theory Spectr. 17, 53–90 (1995)

    Article  Google Scholar 

  81. E.G. Schellenberg: Expectancy in melody: Tests of the implication-realisation model, Cognition 58(1), 75–125 (1996)

    Article  Google Scholar 

  82. M. Grachten, J.L. Arcos, R.L. de Mántaras: Melody retrieval using the Implication/Realization model. In: Proc. 6th Int. Conf. Music Inf. Retr (Queen Mary University of London, London 2005)

    Google Scholar 

  83. R. Jackendoff: Musical parsing and musical affect, Music Percept. 9(2), 199–229 (1991)

    Article  Google Scholar 

  84. F. Lerdahl, C.L. Krumhansl: Modeling tonal tension, Music Percept. 24, 329–366 (2007)

    Article  Google Scholar 

  85. M. Hamanaka, K. Hirata, S. Tojo: Implementing a generative theory of tonal music, J. New Music Res. 35, 249–277 (2006)

    Article  MATH  Google Scholar 

  86. M. Hamanaka, K. Hirata, S. Tojo: FATTA: Full automatic time-span tree analyzer. In: Proc. Int. Comput. Music Conf. (ICMC), Copenhagen (2007) pp. 153–156

    Google Scholar 

  87. H. Riemann: Musikalische Syntaxis. Grundriss einer harmonischen Satzbildungslehre (Breitkopf Härtel, Leipzig 1877)

    Google Scholar 

  88. T. Winograd: Linguistics and computer analysis of tonal harmony, J. Music Theory 12, 3–49 (1968)

    Article  Google Scholar 

  89. J. Sundberg, B. Lindblom: Generative theories in language and music descriptions, Cognition 4, 99–122 (1976)

    Article  Google Scholar 

  90. M. Steedman: The Syntactic Process (MIT Press, Cambridge 2000)

    MATH  Google Scholar 

  91. M. Granroth-Wilding, M. Steedman: A robust parser-interpreter for jazz chord sequences, J. New Music Res. 43, 355–374 (2014)

    Article  Google Scholar 

  92. W.B. De Haas: Music Information Retrieval Based on Tonal Harmony, Doctoral Dissertation (Utrecht Univ., Utrecht 2012)

    Google Scholar 

  93. B. De Haas, M. Rohrmeier, R. Veltkamp, F. Wiering: Modeling harmonic similarity using a generative grammar of tonal harmony. In: Proc. 10th Int. Soc. Music Inf. Retr. Conf. (ISMIR 2009), ed. by M. Goto (2009) pp. 549–554

    Google Scholar 

  94. W.B. De Haas, J.P. Magalhães, F. Wiering: Improving audio chord transcription by exploiting harmonic and metric knowledge. In: Proc. 13th Int. Soc. Music Inf. Retr. Conf. (ISMIR 2012) (2012) pp. 295–300

    Google Scholar 

  95. D. Tidhar: A Hierarchical and Deterministic Approach to Music Grammars and its Application to Unmeasured Preludes, Ph.D. Thesis (Technische Universität Berlin, Berlin 2005)

    Google Scholar 

  96. E. Gilbert, D. Conklin: A probabilistic context-free grammar for melodic reduction. In: Proc. Int. Workshop Artif. Intell. Music, 20th Int. Jt. Conf. Artif. Intell. (IJCAI), Hyderabad (2007) pp. 83–94

    Google Scholar 

  97. R. Bod: Memory-based models of melodic analysis: Challenging the Gestalt principles, J. New Music Res. 30, 27–37 (2001)

    Google Scholar 

  98. H. Schaffrath: The ESAC databases and MAPPET software, Comput. Musicol. 8, 66 (1992)

    Google Scholar 

  99. H. Schaffrath: The ESAC electronic songbooks, Comput. Musicol. 9, 78 (1994)

    Google Scholar 

  100. D. Marr: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W.H. Freeman, San Francisco 1982)

    Google Scholar 

  101. M.C. Mozer: Neural network music composition by prediction: Exploring the benefits of psychoacoustic constraints and multi–scale processing, Connect. Sci. 6(2/3), 247–280 (1994)

    Article  Google Scholar 

  102. J.L. Elman: Finding structure in time, Cogn. Sci. 14, 179–211 (1990)

    Article  Google Scholar 

  103. R.N. Shepard: Structural representations of musical pitch. In: Psychology of Music, ed. by D. Deutsch (Academic Press, New York 1982) pp. 343–390

    Chapter  Google Scholar 

  104. M. Rohrmeier, P. Rebuschat, I. Cross: Incidental and online learning of melodic structure, Conscious. Cogn. 20(2), 214–222 (2011)

    Article  Google Scholar 

  105. E. Servan-Schreiber, J.R. Anderson: Chunking as a mechanism of implicit learning, J. Exp. Psychol.: Learn. Mem. Cogn. 16, 592–608 (1990)

    Google Scholar 

  106. M. Rohrmeier: Implicit Learning of Musical Structure: Experimental and Computational Modelling Approaches, Doctoral Dissertation (University of Cambridge, Cambridge 2010)

    Google Scholar 

  107. M. Rohrmeier, I. Cross: Tacit tonality: Implicit learning of context-free harmonic structure. In: Proc. 7th Trienn. Conf. Eur. Soc. Cogn. Sci. Music, ed. by J. Louhivuori, T. Eerola, S. Saarikallio, T. Himberg, P.-S. Eerola (Univ. of Jyväskylä, Jyväskylä 2009) pp. 443–452

    Google Scholar 

  108. D.E. Rumelhart, G. Hinton, R. Williams: Learning internal representations through error propagation. In: Parallel Distributed Processing: Experiments in the Microstructure of Cognition, Vol. 1, ed. by D.E. Rumelhart, J.L. McClelland, PDP Research Group (MIT Press, Cambridge 1986) pp. 25–40

    Google Scholar 

  109. J.B. Pollack: Recursive distributed representations, Artif. Intell. 46(1), 77–105 (1990)

    Article  Google Scholar 

  110. E.W. Large, C. Palmer, J.B. Pollack: Reduced memory representations for music, Cogn. Sci. 19(1), 53–96 (1995)

    Article  Google Scholar 

  111. N. Boulanger-Lewandowski, Y. Bengio, P. Vincent: Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In: Proc. 29th Int. Conf. Mach. Learn. (ICML), Edinburgh (2012)

    Google Scholar 

  112. S. Cherla, T. Weyde, A. d’Avila Garcez, M.T. Pearce: Learning distributed representations for multiple-viewpoint melodic prediction. In: Proc. 14th Int. Soc. Music Inf. Retriev. Conf. (ISMIR 2013), Curitiba (2013)

    Google Scholar 

  113. M.T. Pearce, M. Rohrmeier: Music cognition and the cognitive sciences, TopiCS Cogn. Sci. 4, 468–484 (2012)

    Article  Google Scholar 

  114. A. Patel: Music, Language and the Brain (OUP, Oxford 2008)

    Google Scholar 

  115. A.D. Patel: Why would musical training benefit the neural encoding of speech? The OPERA hypothesis, Front. Psychol. 2, 142 (2011)

    Article  Google Scholar 

  116. S. Koelsch: Brain and Music (Wiley, Chichester 2012)

    Google Scholar 

  117. J.J. Bharucha, K. Stoeckig: Reaction time and musical expectancy: Priming of chords, J. Exp. Psychol. Hum. Percept. Perform. 12(4), 403–410 (1986)

    Article  Google Scholar 

  118. J.J. Bharucha, K. Stoeckig: Priming of chords: Spreading activation or overlapping frequency spectra?, Percept. Psychophys. 41(6), 519–524 (1987)

    Article  Google Scholar 

  119. B. Tillmann: Implicit investigations of tonal knowledge in nonmusicians listeners, Ann. N. Y. Acad. Sci. 1060, 1–11 (2005)

    Article  Google Scholar 

  120. E. Bigand, F. Madurell, B. Tillmann, M. Pineau: Effect of global structure and temporal organization on chord processing, J. Exp. Psychol. Hum. Percept. Perform. 25(1), 184–197 (1999)

    Article  Google Scholar 

  121. F. Marmel, F. Perrin, B. Tillmann: Tonal expectations influence early pitch processing: Evidence from ERPs, J. Cogn. Neurosci. 23, 3095–3104 (2011)

    Article  Google Scholar 

  122. E. Bigand, B. Tillmann, B. Poulin, D.A. D’Adamo: The effect of harmonic context on phoneme monitoring in vocal music, Cognition 81, B11–B20 (2001)

    Article  Google Scholar 

  123. E. Bigand, B. Poulin, B. Tillmann, D. D’Adamo: Cognitive versus sensory components in harmonic priming effects, J. Exp. Psychol. Hum. Percept. Perform. 29(1), 159–171 (2003)

    Article  Google Scholar 

  124. E. Bigand, B. Tillmann, B. Poulin-Charronnat, D. Manderlier: Repetition priming: Is music special?, Q. J. Exp. Psychol. Sect. A 58(8), 1347–1375 (2005)

    Article  Google Scholar 

  125. E. Bigand, B. Poulin, B. Tillmann, F. Madurell, D.A. D'Adamo: Sensory versus cognitive components in harmonic priming, J. Exp. Psychol. Hum. Percept. Perform. 29(1), 159–171 (2003)

    Article  Google Scholar 

  126. B. Tillmann, J.J. Bharucha, E. Bigand: Implicit learning of music: A self-organizing approach, Psychol. Rev. 107, 885–913 (2000)

    Article  Google Scholar 

  127. E.G. Schellenberg: Simplifying the implication-realisation model of melodic expectancy, Music Percept. 14(3), 295–318 (1997)

    Article  Google Scholar 

  128. W.F. Thompson, M. Stainton: Expectancy in Bohemian folk song melodies: Evaluation of implicative principles for implicative and closural intervals, Music Percept. 15(3), 231–252 (1998)

    Article  Google Scholar 

  129. P.T. von Hippel, D. Huron: Why do skips precede reversals? The effects of tessitura on melodic structure, Music Percept. 18(1), 59–85 (2000)

    Article  Google Scholar 

  130. F.A. Russo, L.L. Cuddy: A common origin for vocal accuracy and melodic expectancy: Vocal constraints, J. Acoust. Soc. Am. 105, 1217 (1999)

    Article  Google Scholar 

  131. A. Tierney, F.A. Russo, A.D. Patel: The motor origins of human and avian song structure, Proc. Natl. Acad. Sci. (PNAS) USA 108, 15510–15515 (2011)

    Article  Google Scholar 

  132. P.T. von Hippel: Melodic-expectation rules as learned heuristics. In: Proc. 7th Int. Conf. Music Percept. Cogn., ed. by C. Stevens, D. Burnham, E. Schubert, J. Renwick (Causal Productions, Adelaide 2002) pp. 315–317

    Google Scholar 

  133. N. Oram, L.L. Cuddy: Responsiveness of Western adults to pitch-distributional information in melodic sequences, Psychol. Res. 57(2), 103–118 (1995)

    Google Scholar 

  134. C.L. Krumhansl, P. Toivanen, T. Eerola, P. Toiviainen, T. Järvinen, J. Louhivuori: Cross-cultural music cognition: Cognitive methodology applied to North Sami yoiks, Cognition 76(1), 13–58 (2000)

    Article  Google Scholar 

  135. T. Eerola: Data-driven influences on melodic expectancy: Continuations in North Sami Yoiks rated by South African traditional healers. In: Proc. 8th Int. Conf. Music Percept. Cogn, ed. by S.D. Lipscomb, R. Ashley, R.O. Gjerdingen, P. Webster (Causal Productions, Adelaide 2004) pp. 83–87

    Google Scholar 

  136. J.C. Carlsen: Some factors which influence melodic expectancy, Psychomusicology 1(1), 12–29 (1981)

    Article  Google Scholar 

  137. M.A. Castellano, J.J. Bharucha, C.L. Krumhansl: Tonal hierarchies in the music of North India, J. Exp. Psychol. Gen. 113(3), 394–412 (1984)

    Article  Google Scholar 

  138. E.J. Kessler, C. Hansen, R.N. Shepard: Tonal schemata in the perception of music in Bali and the West, Music Percept. 2(2), 131–165 (1984)

    Article  Google Scholar 

  139. C.L. Krumhansl, J. Louhivuori, P. Toiviainen, T. Järvinen, T. Eerola: Melodic expectation in Finnish spiritual hymns: Convergence of statistical, behavioural and computational approaches, Music Percept. 17(2), 151–195 (1999)

    Article  Google Scholar 

  140. M. Rohrmeier, R. Widdess: Incidental learning of melodic structure of North Indian music, Cogn. Sci. (2016), https://doi.org/10.1111/cogs.12404

    Article  Google Scholar 

  141. E.G. Schellenberg, M. Adachi, K.T. Purdy, M.C. McKinnon: Expectancy in melody: Tests of children and adults, J. Exp. Psychol.: Gen. 131(4), 511 (2002)

    Article  Google Scholar 

  142. C.L. Krumhansl: Cognitive Foundations of Musical Pitch (Oxford Univ. Press, Oxford 1990)

    Google Scholar 

  143. W.E. Caplin: Classical Form: A Theory of Formal Functions for the Instrumental Music of Haydn, Mozart, and Beethoven (Oxford Univ. Press, Oxford 1998)

    Google Scholar 

  144. D. Deutsch: The processing of structured and unstructured tonal sequences, Percept. Psychophys. 28(5), 381–389 (1980)

    Article  Google Scholar 

  145. M.G. Boltz, M.R. Jones: Does rule recursion make melodies easier to reproduce? If not, what does?, Cogn. Psychol. 18(4), 389–431 (1986)

    Article  Google Scholar 

  146. V.J. Konečni: Elusive effects of artists’ ‘‘messages’’. In: Cognitive Processes in the Perception of Art, ed. by W.R. Crozier, A.J. Chapman (North Holland, Amsterdam 1984) pp. 71–93

    Chapter  Google Scholar 

  147. H. Gotlieb, V.J. Konečni: The effects of instrumentation, playing style, and structure in the Goldberg Variations by Johann Sebastian Bach, Music Percept. 3, 87–102 (1985)

    Article  Google Scholar 

  148. N. Cook: The perception of large-scale tonal closure, Music Percept. 5(2), 197–206 (1987)

    Article  Google Scholar 

  149. R.O. Gjerdingen: An experimental music theory? In: Rethinking Music, ed. by M. Everist, N. Cook (Oxford Univ. Press, Oxford 1999) pp. 161–170

    Google Scholar 

  150. M. Karno, V.J. Konečni: The effects of structural interventions in the First Movement of Mozart’s Symphony in G-Minor K. 550 on aesthetic preference, Music Percept. 10, 63–72 (1992)

    Article  Google Scholar 

  151. E.W. Marvin, A. Brinkman: The effect of modulation and formal manipulation on perception of tonic closure by expert listeners, Music Percept. 16, 389–408 (1999)

    Article  Google Scholar 

  152. S. Koelsch, M. Rohrmeier, R. Torrecuso, S. Jentschke: Processing of hierarchical syntactic structure in music, Proc. Natl. Acad. Sci. Am. 110, 15443–15448 (2013)

    Article  Google Scholar 

  153. S.M. Kosslyn: If neuroimaging is the answer, what is the question?, Proc. R. Soc. B 354, 1283–1294 (1999)

    Google Scholar 

  154. M. Mather, J.T. Cacioppo, N. Kanwisher: How fMRI can inform cognitive theories, Perspect. Psychol. Sci. 8, 108–113 (2013)

    Article  Google Scholar 

  155. R.A. Poldrack: Can cognitive processes be inferred from neuroimaging data?, Trends Cogn. Sci. 10, 59–63 (2006)

    Article  Google Scholar 

  156. C.N. White, R.A. Poldrack: Using fMRI to constrain theories of cognition, Perspect. Psychol. Sci. 8, 79–83 (2013)

    Article  Google Scholar 

  157. S. Koelsch, T. Gunter, A.D. Friederici: Brain indices of music processing: ‘‘Nonmusicians’’ are musical, J. Cogn. Neurosci. 12(3), 520–541 (2000)

    Article  Google Scholar 

  158. S. Koelsch, S. Kilches, N. Steinbeis, S. Schelinski: Effects of unexpected chords and of performer’s expression on brain responses and electrodermal activity, PLoS One 3(7), e2631 (2008)

    Article  Google Scholar 

  159. S. Koelsch, B.-H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39(5), 657–663 (2002)

    Article  Google Scholar 

  160. S. Leino, E. Brattico, M. Tervaniemi, P. Vuust: Representation of harmony rules in the human brain: Further evidence from event-related potentials, Brain Res. 1142, 169–177 (2007)

    Article  Google Scholar 

  161. P. Loui, T. Grent, D. Torpey, M.G. Woldorff: Effects of attention on the neural processing of harmonic syntax in western music, Cogn. Brain Res. 25, 678–687 (2005)

    Article  Google Scholar 

  162. A.D. Patel, E. Gibson, J. Ratner, M. Besson, P.J. Holcomb: Processing syntactic relations in language and music: An event-related potential study, J. Cogn. Neurosci. 10, 717–733 (1998)

    Article  Google Scholar 

  163. N. Steinbeis, S. Koelsch, J.A. Sloboda: The role of harmonic expectancy violations in musical emotions: Evidence from subjective, physiological and neural responses, J. Cogn. Neurosci. 18(8), 1380–1393 (2006)

    Article  Google Scholar 

  164. S. Koelsch, E. Schroger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39, 38–48 (2002)

    Article  Google Scholar 

  165. S.G. Kim, J.S. Kim, C.K. Chung: The effect of conditional probability of chord progression on brain response: An MEG study, PLoS ONE 6, e17337 (2011)

    Article  Google Scholar 

  166. P. Loui, E.H. Wu, D.L. Wessel, R.T. Knight: A generalized mechanism for perception of pitch patterns, J. Neurosci. 29(2), 454–459 (2009)

    Article  Google Scholar 

  167. M. Besson, F. Faïta: An event-related potential (ERP) study of musical expectancy: Comparison of musicians with nonmusicians, J. Exp. Psychol. Hum. Percept. Perform. 21, 1278–1296 (1995)

    Article  Google Scholar 

  168. H. Nittono, T. Bito, M. Hayashi, S. Sakata, T. Hori: Event-related potentials elicited by wrong terminal notes: Effects of temporal disruption, Biol. Psychol. 52, 1–16 (2000)

    Article  Google Scholar 

  169. K.A. Paller, G. McCarthy, C.C. Wood: Event-related potentials elicited by deviant endings to melodies, Psychophysiology 29(2), 202–206 (1992)

    Article  Google Scholar 

  170. D. Schön, M. Besson: Visually induced auditory expectancy in music reading: A behavioral and electrophysiological study, J. Cogn. Neurosci. 17, 694–705 (2005)

    Article  Google Scholar 

  171. R. Verleger: P3-evoking wrong notes: Unexpected, awaited, or arousing?, Int. J. Neurosci. 55(2–4), 171–179 (1990)

    Article  Google Scholar 

  172. J.J. Bharucha: Music cognition and perceptual facilitation: A connectionist framework, Music Percept. 5, 1–30 (1987)

    Article  Google Scholar 

  173. R.A. Miranda, M.T. Ullman: Double dissociation between rules and memory in music: An event-related potential study, NeuroImage 38(2), 331–345 (2007)

    Article  Google Scholar 

  174. S. Koelsch, S. Jentschke: Differences in electric brain responses to melodies and chords, J. Cogn. Neurosci. 22(10), 2251–2262 (2010)

    Article  Google Scholar 

  175. S. Koelsch, T.C. Gunter, M. Wittfoth, D. Sammler: Interaction between syntax processing in language and in music: An ERP study, J. Cogn. Neurosci. 17(10), 1565–1577 (2005)

    Article  Google Scholar 

  176. E. Carrus, M.T. Pearce, J. Bhattacharya: Melodic pitch expectation interacts with neural responses to syntactic but not semantic violations, Cortex 49, 2186–2200 (2012)

    Article  Google Scholar 

  177. N. Steinbeis, S. Koelsch: Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns, Cereb. Cortex 18(5), 1169–1178 (2008)

    Article  Google Scholar 

  178. A.D. Friederici: Towards a neural basis of auditory sentence processing, Trends Cogn. Sci. 6, 78–84 (2002)

    Article  Google Scholar 

  179. E. Fonteneau, H.K.J. van der Lely: Electrical brain responses in language-impaired children reveal grammar-specific deficits, PLoS One 3(3), e1832 (2008)

    Article  Google Scholar 

  180. S. Jentschke, S. Koelsch, S. Sallat, A.D. Friederici: Children with specific language impairment also show impairment of music-syntactic processing, J. Cogn. Neurosci. 20(11), 1940–1951 (2008)

    Article  Google Scholar 

  181. A.D. Patel, J.R. Iversen, M. Wassenaar, P. Hagoort: Musical syntax processing in agrammatic Broca’s aphasia, Aphasiology 22, 776–789 (2008)

    Article  Google Scholar 

  182. B. Maess, S. Koelsch, T.C. Gunter, A.D. Friederici: ‘Musical syntax’ is processed in Broca’s area: An MEG-study, Nat. Neurosci. 4, 540–545 (2001)

    Article  Google Scholar 

  183. S. Koelsch, T.C. Gunter, D.Y. von Cramon, S. Zysset, G. Lohmann, A.D. Friederici: Bach speaks: A cortical ‘language-network’ serves the processing of music, Neuroimage 17, 956–966 (2002)

    Article  Google Scholar 

  184. B. Tillmann, P. Janata, J.J. Bharucha: Activation of the inferior frontal cortex in musical priming, Cogn. Brain Res. 16, 145–161 (2003)

    Article  Google Scholar 

  185. D. Levitin, V. Menon: Musical structure is processed in ‘‘language’’ areas of the brain: A possible role for Brodmann area 47 in temporal coherence, NeuroImage 20, 2142–2152 (2003)

    Article  Google Scholar 

  186. S. Brown, M.J. Martinez, L.M. Parsons: Music and language side by side in the brain: A PET study of the generation of melodies and sentences, Eur. J. Neurosci. 23, 2791–2803 (2006)

    Article  Google Scholar 

  187. T.R. Knösche, C. Neuhaus, J. Haueisen, K. Alter, B. Maess, A.D. Friederici, O. Witte: The perception of phrase structure in music, Hum. Brain Mapp. 24, 259–273 (2005)

    Article  Google Scholar 

  188. K. Steinhauer, K. Alter, A.D. Friederici: Brain potentials indicate immediate use of prosodic cues in natural speech processing, Nat. Neurosci. 2, 191–196 (1999)

    Article  Google Scholar 

  189. K. Steinhauer, A.D. Friederici: Prosodic boundaries, comma rules, and brain responses: The closure positive shift in ERPs as a universal marker for prosodic phrasing in listeners and readers, J. Psycholinguist. Res. 30, 267–295 (2001)

    Article  Google Scholar 

  190. A. Pannekamp, U. Toepel, K. Alter, A. Hahne, A.D. Friederici: Prosody-driven sentence processing: An event-related brain potential study, J. Cogn. Neurosci. 17, 407–421 (2005)

    Article  Google Scholar 

  191. C. Neuhaus, T. Knösche, A. Friederici: Effects of musical expertise and boundary markers on phrase perception in music, J. Cogn. Neurosci. 18, 472–493 (2006)

    Article  Google Scholar 

  192. P.N. Johnson-Laird: Jazz improvisation: A theory at the computational level. In: Representing Musical Structure, ed. by P. Howell, R. West, I. Cross (Academic Press, London 1991) pp. 291–325

    Google Scholar 

  193. C. Francois, D. Schön: Musical expertise boosts implicit learning of both musical and linguistic structures, Cereb. Cortex 21, 2357–2365 (2011)

    Article  Google Scholar 

  194. I. Peretz, E. Brattico, M. Järvenpää, M. Tervaniemi: The amusic brain: In tune, out of key, and unaware, Brain 132, 1277–1286 (2009)

    Article  Google Scholar 

  195. M. Rohrmeier, S. Koelsch: Predictive information processing in music cognition. A critical review, Int. J. Psychophysiol. 83(2), 164–175 (2012)

    Article  Google Scholar 

  196. S. Koelsch: Towards a neural basis of processing musical semantics, Phys. Life Rev. 8(2), 89–105 (2011)

    Google Scholar 

  197. U. Reich: The meanings of semantics: Comment on ‘‘Towards a neural basis of processing musical semantics’’ by Stefan Koelsch, Phys. Life Rev. 8(2), 120–121 (2011)

    Google Scholar 

  198. L.B. Meyer: Emotion and Meaning in Music (University of Chicago Press, Chicago 1956)

    Google Scholar 

  199. E. Hanslick: Vom Musikalisch-Schönen (R. Weigel, Leipzig 1854), Reprint: Darmstadt 1965

    Google Scholar 

  200. L.B. Meyer: Meaning in music and information theory, J. Aesthet. Art Crit. 15(4), 412–424 (1957)

    Article  Google Scholar 

  201. I.H. Witten, L.C. Manzara, D. Conklin: Comparing human and computational models of music prediction, Comput. Music J. 18(1), 70–80 (1994)

    Article  Google Scholar 

  202. P.N. Juslin, D. Västfjäll: Emotional responses to music: The need to consider underlying mechanisms, Behav. Brain Sci. 31(5), 559–575 (2008), discussion pp. 575–621

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pearce, M., Rohrmeier, M. (2018). Musical Syntax II: Empirical Perspectives. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics