Advertisement

Auditory Working Memory

  • Katrin Schulze
  • Stefan Koelsch
  • Victoria Williamson
Part of the Springer Handbooks book series (SHB)

Abstract

This chapter reviews behavioral and neuroimaging findings on:
  1. 1.

    The comparison between verbal and tonal working memory (WM )

     
  2. 2.

    The impact of musical training

     
  3. 3.

    The role of sound mimicry for auditory memory

     
  4. 4.

    The influence of long-term memory (LTM ) on auditory WM performance, i. e., the effect of strategy use on auditory WM.

     

Whereas the core structures, namely Broca's area, the premotor cortex, and the inferior parietal lobule, show a substantial overlap, results in musicians suggest that there are also different subcomponents involved during verbal and tonal WM. If confirmed, these results indicate that musicians develop either independent tonal and phonological loops or unique processing strategies that allow novel interactive use of the WM systems. We furthermore present and discuss data that provide substantial support for the hypothesis that motor-related processes assist auditory WM, and as a result we propose a strong link between sound mimicry and auditory WM.

aKE

affected KE family (FOXP2 mutation)

fMRI

functional magnetic resonance imaging

IPL

inferior parietal lobule

IPS

intraparietal sulcus

LTM

long-term memory

mid-DLPFC

mid-dorsolateral prefrontal cortex

SMA

supplementary motor area

SMG

supramarginal gyrus

Spt

Sylvian-parietal-temporal

STM

short-term memory

WM

working memory

References

  1. 24.1
    A.D. Baddeley: Working memory: Looking back and looking forward, Nat. Rev. Neurosci. 4(10), 829–839 (2003)CrossRefGoogle Scholar
  2. 24.2
    A.D. Baddeley: Working memory, Science 255(5044), 556–559 (1992)CrossRefGoogle Scholar
  3. 24.3
    A.D. Baddeley, G.J. Hitch: Working memory. In: Recent Advances in Learning and Motivation, ed. by G.A. Bower (Academic, New York 1974) pp. 47–89Google Scholar
  4. 24.4
    B.R. Buchsbaum, M. D’Esposito: The search for the phonological store: From loop to convolution, J. Cogn. Neurosci. 20(5), 762–778 (2008)CrossRefGoogle Scholar
  5. 24.5
    A.D. Baddeley: Working memory, Curr. Biol. 20(4), R136–R140 (2010)CrossRefGoogle Scholar
  6. 24.6
    A.D. Baddeley: Working memory: Theories, models, and controversies, Annu. Rev. Psychol. 63, 1–29 (2012)CrossRefGoogle Scholar
  7. 24.7
    N. Cowan: Evolving conceptions of memory storage, selective attention, and their mutual constraints within the human information-processing system, Psychol. Bull. 104(2), 163–191 (1988)CrossRefGoogle Scholar
  8. 24.8
    N. Cowan: An embedded-processes model of working memory. In: Models of Working Memory, ed. by A. Miyake, P. Shah (University Press, Cambridge 1999) pp. 62–101CrossRefGoogle Scholar
  9. 24.9
    K.A. Ericsson, W. Kintsch: Long-term working-memory, Psychol. Rev. 102(2), 211–245 (1995)CrossRefGoogle Scholar
  10. 24.10
    D.M. Jones: Objects, streams and threads of auditory attention. In: Attention: Selection, Awareness and Control, ed. by A.D. Baddeley, L. Weiskrantz (Clarendon, Oxford 1993) pp. 87–104Google Scholar
  11. 24.11
    J.S. Nairne: A feature model of immediate memory, Mem. Cogn. 18(3), 251–269 (1990)CrossRefGoogle Scholar
  12. 24.12
    W.L. Berz: Working memory in music: A theoretical model, Music Percept 12(3), 353–364 (1995)CrossRefGoogle Scholar
  13. 24.13
    G. Hickok, B. Buchsbaum, C. Humphries, T. Muftuler: Auditory-motor interaction revealed by fMRI: Speech, music, and working memory in area Spt, J. Cogn. Neurosci. 15(5), 673–682 (2003)CrossRefGoogle Scholar
  14. 24.14
    S. Koelsch, K. Schulze, D. Sammler, T. Fritz, K. Muller, O. Gruber: Functional architecture of verbal and tonal working memory: An fMRI study, Hum. Brain Mapp. 30(3), 859–873 (2009)CrossRefGoogle Scholar
  15. 24.15
    T. Pechmann, G. Mohr: Interference in memory for tonal pitch: Implications for a working-memory model, Mem. Cogn. 20(3), 314–320 (1992)CrossRefGoogle Scholar
  16. 24.16
    Z.A. Schendel, C. Palmer: Suppression effects on musical and verbal memory, Mem. Cogn. 35(4), 640–650 (2007)CrossRefGoogle Scholar
  17. 24.17
    K. Schulze, S. Zysset, K. Mueller, A.D. Friederici, S. Koelsch: Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians, Hum. Brain Mapp. 32, 771–783 (2011)CrossRefGoogle Scholar
  18. 24.18
    V.J. Williamson, A.D. Baddeley, G.J. Hitch: Musicians’ and nonmusicians’ short-term memory for verbal and musical sequences: Comparing phonological similarity and pitch proximity, Mem. Cogn. 38(2), 163–175 (2010)CrossRefGoogle Scholar
  19. 24.19
    N. Cowan: What are the differences between long-term, short-term, and working memory?, Essence Mem 169, 323–338 (2008)CrossRefGoogle Scholar
  20. 24.20
    R.C. Atkinson, R.M. Shiffrin: Human memory: A propsed system and its control processes. In: The Psychology of Learning and Motivation: Advances in Research and Theory, ed. by K.W. Spence, J.T. Spence (Academic, New York 1968) pp. 89–195Google Scholar
  21. 24.21
    T. Shallice, E.K. Warrington: Independent functioning of verbal memory stores: A neuropsychological study, Q. J. Exp. Psychol. 22(2), 261–273 (1970)CrossRefGoogle Scholar
  22. 24.22
    F.I.M. Craik, R.S. Lockhart: Levels of processing–framework for memory research, J. Verbal Learn. Verbal Behav. 11(6), 671–684 (1972)CrossRefGoogle Scholar
  23. 24.23
    A.D. Baddeley: Working Memory Oxford Psychology Series, Vol. 11 (Clarendon, Oxford 1986)Google Scholar
  24. 24.24
    D.A. Norman, T. Shallice: Attention to action: Willed and automatic control of behaviour. In: Consciousness and Self-Regulation. Advances in Research and Theory, ed. by R.J. Davidson, G.E. Schwartz, D. Shapiro (Plenum, New York 1986) pp. 1–18Google Scholar
  25. 24.25
    R.W. Engle, M.J. Kane: Executive attention, working memory capacity, and a two-factor theory of cognitive control, Psychol. Learn. Motiv. 44, 145–199 (2004)CrossRefGoogle Scholar
  26. 24.26
    R. Conrad, A.J. Hull: Information, acoustic confusion and memory span, Br. J. Psychol. 55, 429–432 (1964)CrossRefGoogle Scholar
  27. 24.27
    A.D. Baddeley, V. Lewis, G. Vallar: Exploring the articulatory loop, Q. J. Exp. Psychol. Sect. A 36(2), 233–252 (1984)CrossRefGoogle Scholar
  28. 24.28
    A.D. Baddeley, N. Thomson, L. Buchanan: Word length and the structure of short-term memory, J. Verbal Learn. Verbal Behav. 14(6), 575–589 (1975)CrossRefGoogle Scholar
  29. 24.29
    R.H. Logie: Visuo-spatial processing in working memory, Q. J. Exp. Psychol. A 38(2), 229–247 (1986)CrossRefGoogle Scholar
  30. 24.30
    E.E. Smith, J. Jonides: Working memory: A view from neuroimaging, Cogn. Psychol. 33(1), 5–42 (1997)CrossRefGoogle Scholar
  31. 24.31
    A.D. Baddeley: The episodic buffer: A new component of working memory?, Trends Cogn. Sci. 4(11), 417–423 (2000)CrossRefGoogle Scholar
  32. 24.32
    R.J. Allen, A.D. Baddeley, G.J. Hitch: Is the binding of visual features in working memory resource-demanding?, J. Exp. Psychol. Gen. 135(2), 298–313 (2006)CrossRefGoogle Scholar
  33. 24.33
    R. Conrad: Acoustic confusions in immediate memory, Br. J. Psychol. 55, 75–84 (1964)CrossRefGoogle Scholar
  34. 24.34
    A.M. Surprenant, I. Neath, D.C. LeCompte: Irrelevant speech, phonological similarity, and presentation modality, Memory 7(4), 405–420 (1999)CrossRefGoogle Scholar
  35. 24.35
    A. Baddeley (Ed.): Human Memory: Theory and Practice (Psychology, East Sussex 1997)Google Scholar
  36. 24.36
    A.D. Baddeley, D. Chincotta, L. Stafford, D. Turk: Is the word length effect in STM entirely attributable to output delay? Evidence from serial recognition, Q. J. Exp. Psychol. Sect. A 55(2), 353–369 (2002)CrossRefGoogle Scholar
  37. 24.37
    R.N.A. Henson, T. Hartley, N. Burgess, G. Hitch, B. Flude: Selective interference with verbal short-term memory for serial order information: A new paradigm and tests of a timing-signal hypothesis, Q. J. Exp. Psychol. Sect. A 56(8), 1307–1334 (2003)CrossRefGoogle Scholar
  38. 24.38
    J.D. Larsen, A.D. Baddeley: Disruption of verbal STM by irrelevant speech, articulatory suppression, and manual tapping: Do they have a common source?, Q. J. Exp. Psychol. Sect. A 56(8), 1249–1268 (2003)CrossRefGoogle Scholar
  39. 24.39
    I. Neath, A.M. Surprenant, D.C. LeCompte: Irrelevant speech eliminates the word length effect, Mem. Cogn. 26(2), 343–354 (1998)CrossRefGoogle Scholar
  40. 24.40
    T. Meiser, K.C. Klauer: Working memory and changing state hypothesis, J. Exp. Psychol. Learn. Mem. Cogn. 25(5), 1272–1299 (1999)CrossRefGoogle Scholar
  41. 24.41
    C. Hulme, A.M. Suprenant, T.J. Bireta, G. Stuart, I. Neath: Abolishing the word-length effect, J. Exp. Psychol. Learn. Mem. Cogn. 30(1), 98–106 (2004)CrossRefGoogle Scholar
  42. 24.42
    L. Demany, G. Montandon, C. Semal: Pitch perception and retention: two cumulative benefits of selective attention, Percept. Psychophys. 66(4), 609–617 (2004)CrossRefGoogle Scholar
  43. 24.43
    C. Kaernbach, K. Schlemmer: The decay of pitch memory during rehearsal, J. Acoust. Soc. Am. 123(4), 1846–1849 (2008)CrossRefGoogle Scholar
  44. 24.44
    T.A. Keller, N. Cowan, J.S. Saults: Can auditory memory for tone pitch be rehearsed?, J. Exp. Psychol. Learn. Mem. Cogn. 21(3), 635–645 (1995)CrossRefGoogle Scholar
  45. 24.45
    D. Deutsch: Tones and numbers: Specificity of interference in immediate memory, Science 168(939), 1604–1605 (1970)CrossRefGoogle Scholar
  46. 24.46
    P. Salame, A.D. Baddeley: Effects of background music on phonological short-term memory, Q. J. Exp. Psychol. 41(A), 107–122 (1989)CrossRefGoogle Scholar
  47. 24.47
    C. Semal, L. Demany, K. Ueda, P.A. Halle: Speech versus nonspeech in pitch memory, J. Acoust. Soc. Am. 100(2 Pt 1), 1132–1140 (1996)CrossRefGoogle Scholar
  48. 24.48
    K. Ueda: Short-term auditory memory interference: The Deutsch paradigm revisited, J. Acoust. Soc. Japan 25(6), 457–467 (2004)Google Scholar
  49. 24.49
    A.S. Chan, Y.C. Ho, M.C. Cheung: Music training improves verbal memory, Nature 396(6707), 128 (1998)CrossRefGoogle Scholar
  50. 24.50
    C.L. Krumhansl: Cognitive Foundations of Musical Pitch (Oxford Univ. Press, Oxford 1990)Google Scholar
  51. 24.51
    A.D. Patel: Language, music, syntax and the brain, Nat. Neurosci. 6(7), 674–681 (2003)CrossRefGoogle Scholar
  52. 24.52
    V. Williamson: Comparing Short-Term Memory for Sequences of Verbal and Tonal Materials, Ph.D. Thesis (Univ. of York, York 2008), available from http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.550492 Google Scholar
  53. 24.53
    E. Awh, J. Jonides, E.E. Smith, E.H. Schumacher, R.A. Koeppe, S. Katz: Dissociation of storage and rehearsal in verbal working memory: Evidence from positron emission tomography, Psychol. Sci. 7(1), 25–31 (1996)CrossRefGoogle Scholar
  54. 24.54
    E. Paulesu, C.D. Frith, R.S. Frackowiak: The neural correlates of the verbal component of working memory, Nature 362(6418), 342–345 (1993)CrossRefGoogle Scholar
  55. 24.55
    J.A. Fiez, E.A. Raife, D.A. Balota, J.P. Schwarz, M.E. Raichle, S.E. Petersen: A positron emission tomography study of the short-term maintenance of verbal information, J. Neurosci. 16(2), 808–822 (1996)Google Scholar
  56. 24.56
    O. Gruber, D.Y. von Cramon: The functional neuroanatomy of human working memory revisited. Evidence from 3-T fMRI studies using classical domain-specific interference tasks, Neuroimage 19(3), 797–809 (2003)CrossRefGoogle Scholar
  57. 24.57
    S.M. Ravizza, M.R. Delgado, J.M. Chein, J.T. Becker, J.A. Fiez: Functional dissociations within the inferior parietal cortex in verbal working memory, Neuroimage 22(2), 562–573 (2004)CrossRefGoogle Scholar
  58. 24.58
    D.E. Bamiou, F.E. Musiek, L.M. Luxon: The insula (Island of Reil) and its role in auditory processing, literature review, Brain Res. Brain Res. Rev. 42(2), 143–154 (2003)CrossRefGoogle Scholar
  59. 24.59
    J.M. Chein, J.A. Fiez: Dissociation of verbal working memory system components using a delayed serial recall task, Cereb. Cortex 11(11), 1003–1014 (2001)CrossRefGoogle Scholar
  60. 24.60
    S.H. Chen, J.E. Desmond: Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks, Neuroimage 24(2), 332–338 (2005)CrossRefGoogle Scholar
  61. 24.61
    M.P. Kirschen, S.H. Chen, P. Schraedley-Desmond, J.E. Desmond: Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: An fMRI study, Neuroimage 24(2), 462–472 (2005)CrossRefGoogle Scholar
  62. 24.62
    S. Crottaz-Herbette, R.T. Anagnoson, V. Menon: Modality effects in verbal working memory: Differential prefrontal and parietal responses to auditory and visual stimuli, Neuroimage 21(1), 340–351 (2004)CrossRefGoogle Scholar
  63. 24.63
    R.N.A. Henson, N. Burgess, C.D. Frith: Recoding, storage, rehearsal and grouping in verbal short-term memory: An fMRI study, Neuropsychologia 38(4), 426–440 (2000)CrossRefGoogle Scholar
  64. 24.64
    J. Jonides, E.H. Schumacher, E.E. Smith, R.A. Koeppe, E. Awh, P.A. Reuter-Lorenz, C. Marshuetz, C.R. Willis: The role of parietal cortex in verbal working memory, J. Neurosci. 18(13), 5026–5034 (1998)Google Scholar
  65. 24.65
    R. Cabeza, L. Nyberg: Imaging cognition II: An empirical review of 275 PET and fMRI studies, J. Cogn. Neurosci. 12(1), 1–47 (2000)CrossRefGoogle Scholar
  66. 24.66
    M. Corbetta, G.L. Shulman: Control of goal-directed and stimulus-driven attention in the brain, Natl. Rev. Neurosci. 3(3), 201–215 (2002)CrossRefGoogle Scholar
  67. 24.67
    J.T. Becker, D.K. MacAndrew, J.A. Fiez: A comment on the functional localization of the phonological storage subsystem of working memory, Brain Cogn 41(1), 27–38 (1999)CrossRefGoogle Scholar
  68. 24.68
    B.R. Buchsbaum, R.K. Olsen, P. Koch, K.F. Berman: Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory, Neuron 48(4), 687–697 (2005)CrossRefGoogle Scholar
  69. 24.69
    G. Hickok: The functional neuroanatomy of language, Phys. Life Rev. 6(3), 121–143 (2009)CrossRefGoogle Scholar
  70. 24.70
    G. Hickok, J. Houde, F. Rong: Sensorimotor integration in speech processing: Computational basis and neural organization, Neuron 69(3), 407–422 (2011)CrossRefGoogle Scholar
  71. 24.71
    G. Hickok, D. Poeppel: The cortical organization of speech processing, Nat. Rev. Neurosci. 8(5), 393–402 (2007)CrossRefGoogle Scholar
  72. 24.72
    J.P. Rauschecker, S.K. Scott: Maps and streams in the auditory cortex: Nonhuman primates illuminate human speech processing, Nat. Neurosci. 12(6), 718–724 (2009)CrossRefGoogle Scholar
  73. 24.73
    N. Gaab, C. Gaser, T. Zaehle, L. Jancke, G. Schlaug: Functional anatomy of pitch memory – An fMRI study with sparse temporal sampling, Neuroimage 19(4), 1417–1426 (2003)CrossRefGoogle Scholar
  74. 24.74
    R.J. Zatorre, A.C. Evans, E. Meyer: Neural mechanisms underlying melodic perception and memory for pitch, J. Neurosci. 14(4), 1908–1919 (1994)Google Scholar
  75. 24.75
    R. Cabeza, L. Nyberg: Neural bases of learning and memory: Functional neuroimaging evidence, Curr. Opin. Neurol. 13(4), 415–421 (2000)CrossRefGoogle Scholar
  76. 24.76
    M. Petrides, B. Alivisatos, E. Meyer, A.C. Evans: Functional activation of the human frontal cortex during the performance of verbal working memory tasks, Proc. Natl. Acad. Sci. US 90(3), 878–882 (1993)CrossRefGoogle Scholar
  77. 24.77
    T.D. Wager, E.E. Smith: Neuroimaging studies of working memory: A meta-analysis, Cogn. Affect Behav. Neurosci. 3(4), 255–274 (2003)CrossRefGoogle Scholar
  78. 24.78
    M. Wilson: The case for sensorimotor coding in working memory, Psychon. Bull. Rev. 8(1), 44–57 (2001)MathSciNetCrossRefGoogle Scholar
  79. 24.79
    M. Bangert, T. Peschel, G. Schlaug, M. Rotte, D. Drescher, H. Hinrichs, H.J. Heinze, E. Altenmuller: Shared networks for auditory and motor processing in professional pianists: Evidence from fMRI conjunction, Neuroimage 30(3), 917–926 (2006)CrossRefGoogle Scholar
  80. 24.80
    A. D’Ausilio, E. Altenmuller, M. Olivetti Belardinelli, M. Lotze: Cross-modal plasticity of the motor cortex while listening to a rehearsed musical piece, Eur. J. Neurosci. 24(3), 955–958 (2006)CrossRefGoogle Scholar
  81. 24.81
    U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: When hearing turns into playing: Movement induction by auditory stimuli in pianists, Q. J. Exp. Psychol. A 58(8), 1376–1389 (2005)CrossRefGoogle Scholar
  82. 24.82
    U.C. Drost, M. Rieger, M. Brass, T.C. Gunter, W. Prinz: Action-effect coupling in pianists, Psychol. Res. 69(4), 233–241 (2005)CrossRefGoogle Scholar
  83. 24.83
    B. Haslinger, P. Erhard, E. Altenmuller, U. Schroeder, H. Boecker, A.O. Ceballos-Baumann: Transmodal sensorimotor networks during action observation in professional pianists, J. Cogn. Neurosci. 17(2), 282–293 (2005)CrossRefGoogle Scholar
  84. 24.84
    A.R. Halpern, R.J. Zatorre, M. Bouffard, J.A. Johnson: Behavioral and neural correlates of perceived and imagined musical timbre, Neuropsychologia 42(9), 1281–1292 (2004)CrossRefGoogle Scholar
  85. 24.85
    K. Schulze, B. Tillmann: Working memory for pitch, timbre, and words, Memory 21(3), 377–395 (2013)CrossRefGoogle Scholar
  86. 24.86
    A.R. Halpern, R.J. Zatorre: When that tune runs through your head: A PET investigation of auditory imagery for familiar melodies, Cereb. Cortex 9(7), 697–704 (1999)CrossRefGoogle Scholar
  87. 24.87
    D. McKeown, R. Mills, T. Mercer: Comparisons of complex sounds across extended retention intervals survives reading aloud, Perception 40(10), 1193–1205 (2011)CrossRefGoogle Scholar
  88. 24.88
    T. Mercer, D. McKeown: Updating and feature overwriting in short-term memory for timbre, Atten. Percept. Psychophys. 72(8), 2289–2303 (2010)CrossRefGoogle Scholar
  89. 24.89
    B.H. Scott, M. Mishkin, P. Yin: Monkeys have a limited form of short-term memory in audition, Proc. Natl. Acad. Sci. US 109(30), 12237–12241 (2012)CrossRefGoogle Scholar
  90. 24.90
    F.J. Liégeois, A.T. Morgan: Neural bases of childhood speech disorders: Lateralization and plasticity for speech functions during development, Neurosci. Biobehav. Rev. 36(1), 439–458 (2012)CrossRefGoogle Scholar
  91. 24.91
    G.S. Waters, E. Rochon, D. Caplan: The role of high-level speech planning in rehearsal – evidence from patients with apraxia of speech, J. Mem. Lang. 31(1), 54–73 (1992)CrossRefGoogle Scholar
  92. 24.92
    F. Vargha-Khadem, D.G. Gadian, A. Copp, M. Mishkin: FOXP2 and the neuroanatomy of speech and language, Nat. Rev. Neurosci. 6(2), 131–138 (2005)CrossRefGoogle Scholar
  93. 24.93
    C.S.L. Lai, S.E. Fisher, J.A. Hurst, F. Vargha-Khadem, A.P. Monaco: A forkhead-domain gene is mutated in a severe speech and language disorder, Nature 413(6855), 519–523 (2001)CrossRefGoogle Scholar
  94. 24.94
    F. Liégeois, A.T. Morgan, A. Connelly, F. Vargha-Khadem: Endophenotypes of FOXP2: Dysfunction within the human articulatory network, J. Eur. Paediatr. Neurol. Soc. 15(4), 283–288 (2011)CrossRefGoogle Scholar
  95. 24.95
    K.E. Watkins, F. Vargha-Khadem, J. Ashburner, R.E. Passingham, A. Connelly, K.J. Friston, R.S. Frackowiak, M. Mishkin, D.G. Gadian: MRI analysis of an inherited speech and language disorder: Structural brain abnormalities, Brain 125, 465–478 (2002)CrossRefGoogle Scholar
  96. 24.96
    F. Liegeois, T. Baldeweg, A. Connelly, D.G. Gadian, M. Mishkin, F. Vargha-Khadem: Language fMRI abnormalities associated with FOXP2 gene mutation, Nat. Neurosci. 6(11), 1230–1237 (2003)CrossRefGoogle Scholar
  97. 24.97
    S.J. Pickering, S.E. Gathercole: Working Memory Test Battery for Children (WMTB-C) (Pearson, London 2001)Google Scholar
  98. 24.98
    K. Schulze, F. Vargha-Khadem, M. Mishkin: Phonological working memory and FOXP2 (2017) submitted for publicationGoogle Scholar
  99. 24.99
    K. Schulze, F. Vargha-Khadem, M. Mishkin: Test of a motor theory of long-term auditory memory, Proc. Natl. Acad. Sci. USA 109(18), 7121–7125 (2012)CrossRefGoogle Scholar
  100. 24.100
    G. Rizzolatti, L. Craighero: The mirror-neuron system, Annu. Rev. Neurosci. 27, 169–192 (2004)CrossRefGoogle Scholar
  101. 24.101
    E. Kohler, C. Keysers, M.A. Umilta, L. Fogassi, V. Gallese, G. Rizzolatti: Hearing sounds, understanding actions: Action representation in mirror neurons, Science 297(5582), 846–848 (2002)CrossRefGoogle Scholar
  102. 24.102
    C. Jacquemot, S.K. Scott: What is the relationship between phonological short-term memory and speech processing?, Trends Cogn. Sci. 10(11), 480–486 (2006)CrossRefGoogle Scholar
  103. 24.103
    K. Schulze, S. Koelsch: Working memory for speech and music, Ann. N.Y. Acad. Sci. 1252, 229–236 (2012),  https://doi.org/10.1111/j.1749-6632.2012.06447.x CrossRefGoogle Scholar
  104. 24.104
    D. Saur, B.W. Kreher, S. Schnell, D. Kummerer, P. Kellmeyer, M.S. Vry, R. Umarova, M. Musso, V. Glauche, S. Abel, W. Huber, M. Rijntjes, J. Hennig, C. Weiller: Ventral and dorsal pathways for language, Proc. Natl. Acad. Sci. USA 105(46), 18035–18040 (2008)CrossRefGoogle Scholar
  105. 24.105
    K. Schulze: How singing works, Front Psychol 3, 51 (2012)CrossRefGoogle Scholar
  106. 24.106
    S.D.B. Dalla, M. Berkowska, J. Sowinski: Disorders of pitch production in tone deafness, Front. Psychol. 2, 164 (2011)Google Scholar
  107. 24.107
    G.A. Miller: The magical number seven plus or minus two: Some limits on our capacity for processing information, Psychol. Rev. 63(2), 81–97 (1956)CrossRefGoogle Scholar
  108. 24.108
    K.A. Ericsson, W.G. Chase, S. Faloon: Acquisition of a memory skill, Science 208(4448), 1181–1182 (1980)CrossRefGoogle Scholar
  109. 24.109
    F. Gobet: Chunking models of expertise: Implications for education, Appl. Cogn. Psychol. 19(2), 183–204 (2005)CrossRefGoogle Scholar
  110. 24.110
    F. Gobet, P.C. Lane, S. Croker, P.C. Cheng, G. Jones, I. Oliver, J.M. Pine: Chunking mechanisms in human learning, Trends Cogn. Sci. 5(6), 236–243 (2001)CrossRefGoogle Scholar
  111. 24.111
    D. Bor, N. Cumming, C.E. Scott, A.M. Owen: Prefrontal cortical involvement in verbal encoding strategies, Eur. J. Neurosci. 19(12), 3365–3370 (2004)CrossRefGoogle Scholar
  112. 24.112
    C.R. Savage, T. Deckersbach, S. Heckers, A.D. Wagner, D.L. Schacter, N.M. Alpert, A.J. Fischman, S.L. Rauch: Prefrontal regions supporting spontaneous and directed application of verbal learning strategies: Evidence from PET, Brain 124(Pt 1), 219–231 (2001)CrossRefGoogle Scholar
  113. 24.113
    D. Bor, J. Duncan, R.J. Wiseman, A.M. Owen: Encoding strategies dissociate prefrontal activity from working memory demand, Neuron 37(2), 361–367 (2003)CrossRefGoogle Scholar
  114. 24.114
    D. Bor, A.M. Owen: A common prefrontal-parietal network for mnemonic and mathematical recoding strategies within working memory, Cereb. Cortex 17(4), 778–786 (2007)CrossRefGoogle Scholar
  115. 24.115
    K. Schulze, K. Mueller, S. Koelsch: Neural correlates of strategy use during auditory working memory in musicians and non-musicians, Eur. J. Neurosci. 33(1), 189–196 (2011)CrossRefGoogle Scholar
  116. 24.116
    S. Koelsch, E. Schroger, M. Tervaniemi: Superior pre-attentive auditory processing in musicians, Neuroreport 10(6), 1309–1313 (1999)CrossRefGoogle Scholar
  117. 24.117
    C.L. Krumhansl, R.N. Shepard: Quantification of the hierarchy of tonal functions within a diatonic context, J. Exp. Psychol. Hum. Percept. Perform 5(4), 579–594 (1979)CrossRefGoogle Scholar
  118. 24.118
    C.L. Krumhansl: The psychological representation of musical pitch in a tonal context, Cogn. Psychol. 11, 346–374 (1979)CrossRefGoogle Scholar
  119. 24.119
    S. Koelsch, E. Schroger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39(1), 38–48 (2002)CrossRefGoogle Scholar
  120. 24.120
    K. Schulze, W.J. Dowling, B. Tillmann: Working memory for tonal and atonal sequences during a forward and a backward recognition task, Music Percept 29(3), 255–267 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Katrin Schulze
    • 1
  • Stefan Koelsch
    • 2
  • Victoria Williamson
    • 3
  1. 1.Dept. of Clinical Psychology and Psychotherapy, Institute of PsychologyHeidelberg UniversityHeidelbergGermany
  2. 2.University of BergenBergenNorway
  3. 3.University of SheffieldSheffieldUK

Personalised recommendations