Skip to main content

Automatic Processing of Musical Sounds in the Human Brain

  • Chapter
  • 5230 Accesses

Part of the book series: Springer Handbooks ((SHB))

Abstract

This chapter introduces neurophysiological evidence on the dissociation between unconscious and conscious aspects of musical sound perception. The focus is on research conducted with the event-related potential (GlossaryTerm

ERP

) technique, which allows chronometric investigation of information-processing stages during music listening. Findings suggest that automatic processes are confined to the auditory cortex and might even involve the discrimination of deviations from simple musical scale rules. In turn, voluntary, cognitive processes, likely originating from the inferior prefrontal cortex, are necessary to understand more complex musical rules, such as tonality and harmony. The implications of understanding how and to what extent music is processed below the level of consciousness are discussed in rehabilitation and therapeutic settings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BA44:

Brodmann area 44

CI:

cochlear implant

EEG:

electroencephalogram/electroencephalography

ERAN:

early right anterior negativity

ERP:

event-related potential

fMRI:

functional magnetic resonance imaging

MEG:

magnetoencephalography

MMN:

mismatch negativity

MMNm:

magnetic mismatch negativity

OI:

optical imaging

PET:

positron emission tomography

References

  1. J.R. Anderson: Cognitive Psychology and its Implications (Worth, Duffield 2004)

    Google Scholar 

  2. P. Vuust, E. Brattico, E. Glerean, M. Seppänen, S. Pakarinen, M. Tervaniemi, R. Näätänen: New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability, Cortex 47(9), 1091–1098 (2011)

    Article  Google Scholar 

  3. S.A. Hillyard, R.F. Hink, V.L. Schwent, T.W. Picton: Electrical signs of selective attention in the human brain, Science 182, 180 (1973)

    Article  Google Scholar 

  4. U. Neisser: Cognitive Psychology: CT, US (Appletion-Century-Crofts, East Norwalk 1967)

    Google Scholar 

  5. A.M. Treisman, G. Gelade: A feature-integration theory of attention, Cogn. Psychol. 12(1), 97–136 (1980)

    Article  Google Scholar 

  6. R. Näätänen: Attention and Brain Function (Lawrence Erlbaum Associates, Hillsdale 1992)

    Google Scholar 

  7. N. Cowan: Attention and Memory: An Integrated Framework (Oxford Univ. Press, New York 1995)

    Google Scholar 

  8. J.T. Coull: Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol. 55(4), 343–361 (1998)

    Article  Google Scholar 

  9. M. Posner: Neuropsychology: Modulation by instruction, Nature 373(6511), 198–199 (1995)

    Article  Google Scholar 

  10. L. Jäncke, S. Mirzazade, N.J. Shah: Attention modulates activity in the primary and the secondary auditory cortex: A functional magnetic resonance imaging study in human subjects, Neurosci. Lett. 266(2), 125–128 (1999)

    Article  Google Scholar 

  11. C.I. Petkov, X. Kang, K. Alho, O. Bertrand, E.W. Yund, D.L. Woods: Attentional modulation of human auditory cortex, Nat. Neurosci. 7(6), 658–663 (2004)

    Article  Google Scholar 

  12. T.W. Picton, A. Durieux-Smith: Auditory evoked potentials in the assessment of hearing, Neurol. Clin. 6(4), 791–808 (1988)

    Google Scholar 

  13. M.D. Rugg, M.G.H. Coles (Eds.): Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (Oxford Univ. Press, Oxford 1995)

    Google Scholar 

  14. C.L. Krumhansl, P. Toivanen, T. Eerola, P. Toiviainen, T. Järvinen, J. Louhivuori: Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks, Cognition 76(1), 13–58 (2000)

    Article  Google Scholar 

  15. B. Snyder: Music and Memory: An Introduction (MIT Press, Cambridge 2000)

    Google Scholar 

  16. D. Schön, M. Besson: Audiovisual interactions in music reading. A reaction times and event-related potentials study, Ann. N.Y. Acad. Sci. 999, 193–198 (2003)

    Article  Google Scholar 

  17. V.J. Schmithorst: Separate cortical networks involved in music perception: Preliminary functional MRI evidence for modularity of music processing, Neuroimage 25(2), 444–551 (2005)

    Article  Google Scholar 

  18. A.J. Lonsdale, A.C. North: Why do we listen to music? A uses and gratification analysis, Br. J. Psychol. 102(1), 108–134 (2011)

    Article  Google Scholar 

  19. R. Näätänen, A.W. Gaillard, S. Mäntysalo: Early selective-attention effect reinterpreted, Acta Psychologica 42, 313–329 (1978)

    Article  Google Scholar 

  20. R. Näätänen: Mismatch negativity: Clinical research and possible applications, Int. J. Psychophysiol. 48, 179–188 (2003)

    Article  Google Scholar 

  21. H. Lang, T. Nyrke, M. Ek, O. Aaltonen, I. Raimo, R. Näätänen: Pitch discrimination performance and auditory event–related potentials. In: Psychophysiological Brain Research, ed. by C.H.M. Brunia, A.W.K. Gaillard, A. Kok, G. Mulder, M.N. Verbaten (Tilburg Univ. Press, Tilburg 1990) pp. 294–298

    Google Scholar 

  22. M. Tervaniemi, M. Huotilainen, E. Brattico: Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding, Front. Hum. Neurosci. 8, 496 (2014)

    Article  Google Scholar 

  23. H. Tiitinen, P. May, K. Reinikainen, R. Näätänen: Attentive novelty detection in humans is governed by pre-attentive sensory memory, Nature 372, 90–92 (1994)

    Article  Google Scholar 

  24. R. Näätänen, E. Schröger, S. Karakas, M. Tervaniemi, P. Paavilainen: Development of a memory trace for a complex sound in the human brain, NeuroReport 4, 503–506 (1993)

    Article  Google Scholar 

  25. E. Schröger: On the detection of auditory deviations: A pre-attentive activation model, Psychophysiology 34(3), 245–257 (1997)

    Article  Google Scholar 

  26. M. Tervaniemi, J. Saarinen, P. Paavilainen, N. Danilova, R. Näätänen: Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity, Biol. Psychol. 38, 157–167 (1994)

    Article  Google Scholar 

  27. H. Yabe, M. Tervaniemi, K. Reinikainen, R. Näätänen: Temporal window of integration revealed by MMN to sound omission, NeuroReport 8, 1971–1974 (1997)

    Article  Google Scholar 

  28. H. Yabe, M. Tervaniemi, J. Sinkkonen, M. Huotilainen, R.J. Ilmoniemi, R. Näätänen: The temporal window of integration of auditory information in the human brain, Psychophysiology 35, 615–619 (1998)

    Article  Google Scholar 

  29. E. Brattico, M. Tervaniemi, R. Näätänen: Context effects on pitch perception in musicians and nonmusicians: Evidence from event-related potential recordings, Music Perception 19, 1–24 (2001)

    Article  Google Scholar 

  30. I. Winkler, G. Karmos, R. Näätänen: Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event – related potential, Brain Res. 742, 239–252 (1996)

    Article  Google Scholar 

  31. K. Friston: A theory of cortical responses, Philos. Trans. R. Soc. B 360, 815–836 (2005)

    Article  Google Scholar 

  32. R. Näätänen, S. Pakarinen, T. Rinne, R. Takegata: The mismatch negativity (MMN): Towards the optimal paradigm, Clin. Neurophysiol. 115(1), 140–144 (2004)

    Article  Google Scholar 

  33. V. Putkinen, M. Tervaniemi, K. Saarikivi, N. De Vent, M. Huotilainen: Investigating the effects of musical training on functional brain development with a novel melodic MMN paradigm, Neurobiol. Learn. Mem. 110, 8–15 (2014)

    Article  Google Scholar 

  34. T. Särkämö, M. Tervaniemi, S. Laitinen, A. Numminen, M. Kurki, J.K. Johnson, P. Rantanen: Cognitive, emotional, and social benefits of regular musical activities in early dementia: Randomized controlled study, Gerontologist 54(4), 634–650 (2014)

    Article  Google Scholar 

  35. E. Partanen, R. Torppa, J. Pykäläinen, T. Kujala, M. Huotilainen: Children’s brain responses to sound changes in pseudo words in a multifeature paradigm, Clin. Neurophysiol. 124(6), 1132–1138 (2013)

    Article  Google Scholar 

  36. R. Torppa, E. Salo, T. Makkonen, H. Loimo, J. Pykäläinen, J. Lipsanen, A. Faulkner, M. Huotilainen: Cortical processing of musical sounds in children with Cochlear Implants, Clin. Neurophysiol. 123(10), 1966–1979 (2012)

    Article  Google Scholar 

  37. B. Petersen, E. Weed, P. Sandmann, E. Brattico, M. Hansen, S. Derdau Sørensen, P. Vuust: Brain responses to musical feature changes in adolescent cochlear implant users, Front. Hum. Neurosci. 9, 7 (2015), https://doi.org/10.3389/fnhum.2015.00007

    Article  Google Scholar 

  38. M. Sams, R. Hari, J. Rif, J. Knuutila: The human auditory sensory memory trace persists about 10 msec: Neuromagnetic evidence, J. Cogn. Neurosci. 5, 363–370 (1993)

    Article  Google Scholar 

  39. C. Böttscher–Gandor, P. Ullsperger: Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval, Psychophysiology 29, 546–550 (1992)

    Article  Google Scholar 

  40. N. Cowan: On short and long auditory stores, Psychol. Bull. 96, 341–370 (1984)

    Article  Google Scholar 

  41. I. Winkler, R. Näätänen: Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans, Neurosci. Lett. 140, 239–242 (1992)

    Article  Google Scholar 

  42. R. Näätänen: Mismatch negativity (MMN) as an index of central auditory system plasticity, Int. J. Audiol. 47(2), S16–S20 (2008)

    Article  Google Scholar 

  43. E. Schröger, M. Tervaniemi, M. Huotilainen: Bottom–up and top–down flows of information within auditory memory: Electrophysiological evidence. In: Psychophysics Beyond Sensation: Laws and Invariants of Human Cognition, ed. by C. Kaernbach, E. Schröger, H. Müller (Erlbaum, Hillsdale 2004) pp. 389–407

    Google Scholar 

  44. P. Celsis, K. Boulanouar, B. Doyon, J.P. Ranjeva, I. Berry, J.L. Nespoulous, F. Chollet: Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones, Neuroimage 9, 135–144 (1999)

    Article  Google Scholar 

  45. U. Schall, P. Johnston, J. Todd, P.B. Ward, P.T. Michie: Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs, Neuroimage 20, 729–736 (2003)

    Article  Google Scholar 

  46. S. Molholm, A. Martinez, W. Ritter, D.C. Javitt, J.J. Foxe: The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex 15, 545–551 (2005)

    Article  Google Scholar 

  47. T. Rinne, A. Degerman, K. Alho: Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study, Neuroimage 26, 66–72 (2005)

    Article  Google Scholar 

  48. A.K. Lee, E. Larson, R.K. Maddox, B.G. Shinn–Cunningham: Using neuroimaging to understand the cortical mechanisms of auditory selective attention, Hearing Res. 307, 111–120 (2014)

    Article  Google Scholar 

  49. C. Lappe, O. Steinsträter, C. Pantev: A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity, PLoS One 8(4), e61296 (2013)

    Article  Google Scholar 

  50. K. Alho, T. Rinne, T.J. Herron, D.L. Woods: Stimulus-dependent activations and attention-related modulations in the auditory cortex: a metaanalysis of fMRI studies, Hear. Res. 307, 29–41 (2014)

    Article  Google Scholar 

  51. T. Särkämö, E. Pihko, S. Laitinen, A. Forsblom, S. Soinila, M. Mikkonen, T. Autti, H.M. Silvennoinen, J. Erkkilä, M. Laine, I. Peretz, M. Hietanen, M. Tervaniemi: Music and speech listening enhance the recovery of early sensory processing after stroke, J. Cogn. Neurosci. 22(12), 2716–2727 (2010)

    Article  Google Scholar 

  52. M. Tervaniemi, E. Shröger, M. Saher, R. Näätänen: Effects of spectral complexity and sound duration in complex-sound pitch processing in humans-a mismatch negativity study, Neurosci. Lett. 290, 66–70 (2000)

    Article  Google Scholar 

  53. A. Dittmann–Balcar, M. Juptner, W. Jentzen, U. Schall: Dorsolateral prefrontal cortex activation during automatic auditory duration mismatch processing in humans: A positron emission tomography study, Neurosci. Lett. 308, 119–122 (2001)

    Article  Google Scholar 

  54. B.W. Müller, M. Juptner, W. Jentzen, S.P. Müller: Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: A pet study, NeuroImage 17, 231–239 (2002)

    Article  Google Scholar 

  55. C.F. Doeller, B. Opitz, A. Mecklinger, C. Krick, W. Reith, E. Schröger: Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence, NeuroImage 20, 1270–1282 (2004)

    Article  Google Scholar 

  56. C.Y. Tse, T.B. Penney: On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance, NeuroImage 41, 1462–1470 (2008)

    Article  Google Scholar 

  57. C.Y. Tse, T. Rinne, K.K. Ng, T.B. Penney: The functional role of the frontal cortex in pre–attentive auditory change detection, NeuroImage 19(83C), 870–879 (2013)

    Article  Google Scholar 

  58. K. Alho: Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes, Ear Hearing 16, 38–51 (1995)

    Article  Google Scholar 

  59. M.H. Giard, F. Perrin, J. Pernier, P. Bouchet: Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study, Psychophysiology 27, 627–640 (1990)

    Article  Google Scholar 

  60. R. Näätänen, P.T. Michie: Early selective attention effects on the evoked potential: A critical review and reinterpretation, Biol. Psychol. 8, 81–136 (1979)

    Article  Google Scholar 

  61. T. Rinne, R.J. Ilmoniemi, J. Sinkkonen, J. Virtanen, R. Näätänen: Separate time behaviors of the temporal and frontal MMN sources, Neuroimage 12, 14–19 (2000)

    Article  Google Scholar 

  62. R. Näätänen: The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function, The Behav. Brain Sci. 13, 201–288 (1990)

    Article  Google Scholar 

  63. K. Alho, C. Escera, R. Diaz, E. Yago, J.M. Serra: Effects of involuntary auditory attention on visual task performance and brain activity, NeuroReport 8, 3233–3237 (1997)

    Article  Google Scholar 

  64. M.H. Giard, J. Lavikainen, K. Reinikainen, F. Perrin, O. Bertrand, J. Pernier, R. Näätänen: Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis, J. Cogn. Neurosci. 7, 133–143 (1995)

    Article  Google Scholar 

  65. S. Levänen, A. Ahonen, R. Hari, L. McEvoy, M. Sams: Deviant auditory stimuli activate human left and right auditory cortex differently, Cereb. Cortex 6, 288–296 (1996)

    Article  Google Scholar 

  66. S. Levänen, R. Hari, L. McEvoy, M. Sams: Responses of the human auditory cortex to changes in one versus two stimulus features, Exp. Brain Res. 97, 177–183 (1993)

    Article  Google Scholar 

  67. K. Alho, M. Tervaniemi, M. Huotilainen, J. Lavikainen, H. Tiitinen, R.J. Ilmoniemi, J. Knuutila, R. Näätänen: Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses, Psychophysiology 33, 369–375 (1996)

    Article  Google Scholar 

  68. M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi, R. Näätänen: Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study, NeuroImage 9, 330–336 (1999)

    Article  Google Scholar 

  69. M. Tervaniemi, A.J. Szameitat, S. Kruck, E. Schröger, K. Alter, W. De Baene, A.D. Friederici: From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition, J. Neurosci. 26(34), 8647–8652 (2006)

    Article  Google Scholar 

  70. M. Tervaniemi, S. Maury, R. Näätänen: Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity, NeuroReport 5, 844–846 (1994)

    Article  Google Scholar 

  71. P. Paavilainen, M. Jaramillo, R. Näätänen: Binaural information can converge in abstract memory traces, Psychophysiology 35, 483–487 (1998)

    Article  Google Scholar 

  72. P. Paavilainen, J. Saarinen, M. Tervaniemi, R. Näätänen: Mismatch negativity to changes in abstract sound features during dichotic listening, Int. J. Psychophysiol. 9, 243–249 (1995)

    Google Scholar 

  73. J. Saarinen, P. Paavilainen, E. Schröger, M. Tervaniemi, R. Näätänen: Representation of abstract stimulus attributes in human brain, NeuroReport 3, 1149–1151 (1992)

    Article  Google Scholar 

  74. O.A. Korzyukov, I. Winkler, V.I. Gumenyuk, K. Alho: Processing abstract auditory features in the human auditory cortex, NeuroImage 20(4), 2245–2258 (2003)

    Article  Google Scholar 

  75. P. Paavilainen, P. Arajärvi, R. Takegata: Preattentive detection of nonsalient contingencies between auditory features, NeuroReport 18, 159–163 (2007)

    Article  Google Scholar 

  76. P. Paavilainen, A. Degerman, R. Takegata, I. Winkler: Spectral and temporal stimulus characteristics in the processing of abstract auditory features, NeuroReport 14(5), 715–718 (2003)

    Article  Google Scholar 

  77. E. Schröger, A. Bendixen, N.J. Trujillo–Barreto, U. Roeber: Processing of abstract rule violations in audition, PLoS ONE 2, e1131 (2007)

    Article  Google Scholar 

  78. P. Paavilainen, J. Simola, M. Jaramillo, R. Näätänen, I. Winkler: Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN), Psychophysiology 38(2), 359–365 (2001)

    Article  Google Scholar 

  79. D.J. Levitin, A.K. Tirovolas: Current advances in the cognitive neuroscience of music, Ann. N.Y. Acad. Sci. 1156, 211–231 (2009)

    Article  Google Scholar 

  80. E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model (Univ. of Chicago Press, Chicago 1990)

    Google Scholar 

  81. E. Brattico, M. Tervaniemi, R. Näätänen, I. Peretz: Musical scale properties are automatically processed in the human auditory cortex, Brain Res. 1117(1), 162–174 (2006)

    Article  Google Scholar 

  82. R. Näätänen, M. Tervaniemi, E. Sussman, P. Paavilainen, I. Winkler: Primitive intelligence in the auditory cortex, Trends Neurosci. 24(5), 283–288 (2001)

    Article  Google Scholar 

  83. E. Brattico, R. Näätänen, T. Verma, V. Välimäki, M. Tervaniemi: Processing of musical intervals in the central auditory system: An eventrelated potential (ERP) study on sensory consonance. In: Proc. Sixth Int. Conf. Music Percept. Cognit., Keele, ed. by C. Woods, G. Luck, R. Brochard, F. Seddon, J.A. Sloboda (Keele University, Department of Psychology, Keele 2000) pp. 1110–1119, CD-ROM

    Google Scholar 

  84. P. Virtala, V. Berg, M. Kivioja, J. Purhonen, M. Salmenkivi, P. Paavilainen, M. Tervaniemi: The preattentive processing of major vs. minor chords in the human brain: An event-related potential study, Neurosci. Lett. 487(3), 406–410 (2011)

    Article  Google Scholar 

  85. P. Virtala, V. Putkinen, M. Huotilainen, T. Makkonen, M. Tervaniemi: Musical training facilitates the neural discrimination of major vs. minor chords in 13-year-old children, Psychophysiology 49, 1125–1132 (2012)

    Google Scholar 

  86. P. Virtala, M. Huotilainen, E. Partanen, V. Fellman, M. Tervaniemi: Newborn infants’ auditory system is sensitive to Western music chord categories, Front. Psychol. 4, 492 (2013)

    Article  Google Scholar 

  87. P. Virtala, M. Huotilainen, E. Partanen, M. Tervaniemi: Musicianship facilitates the processing of Western music chords – An ERP and behavioural study, Neuropsychologia 61, 247–258 (2014)

    Article  Google Scholar 

  88. S. Koelsch: Toward a neural basis of music perception – A review and updated model, Front. Psychol. 2, 110 (2013), https://doi.org/10.3389/fpsyg.2011.00110

    Article  Google Scholar 

  89. S. Koelsch, E. Schröger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39(1), 38–48 (2002)

    Article  Google Scholar 

  90. P. Loui, T. Grent-’T-Jong, D. Torpey, M. Woldorff: Effects of attention on the neural processing of harmonic syntax in Western music, Cogn. Brain Res. 25(3), 678–687 (2005)

    Article  Google Scholar 

  91. S. Koelsch, B.H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39(5), 657–663 (2002)

    Article  Google Scholar 

  92. E. Brattico, T. Tupala, E. Glerean, M. Tervaniemi: Modulated neural processing of Western harmony in folk musicians, Psychophysiology 50(7), 653–663 (2013)

    Article  Google Scholar 

  93. E.R. Kandel: The molecular biology of memory storage: A dialogue between genes and synapses, Science 294(5544), 1030–1038 (2001)

    Article  Google Scholar 

  94. M. Beauchemin, L. De Beaumont, P. Vannasing, A. Turcotte, C. Arcand, P. Belin, M. Lassonde: Electrophysiological markers of voice familiarity, Eur. J. Neurosci. 23, 3081–3086 (2006)

    Article  Google Scholar 

  95. O. Hauk, Y. Shtyrov, F. Pulvermuller: The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements, Eur. J. Neurosci. 23, 811–821 (2006)

    Article  Google Scholar 

  96. S. Koelsch, E. Schröger, M. Tervaniemi: Superior attentive and pre-attentive auditory processing in musicians, NeuroReport 10, 1309–1313 (1999)

    Article  Google Scholar 

  97. M. Seppänen, E. Brattico, M. Tervaniemi: Practice strategies of musicians modulate neural processing and the learning of sound–patterns, Neurobiol. Learn. Mem. 87(2), 236–247 (2007)

    Article  Google Scholar 

  98. T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev: Musical training enhances automatic encoding of melodic contour and interval structure, J. Cogn. Neurosci. 16(6), 1010–1021 (2004)

    Article  Google Scholar 

  99. P. Vuust, E. Brattico, M. Seppänen, R. Näätänen, M. Tervaniemi: The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm, Neuropsychologia 50(7), 1432–1443 (2012)

    Article  Google Scholar 

  100. M. Tervaniemi, T. Ilvonen, K. Karma, K. Alho, R. Näätänen: The musical brain: Brain waves reveal the neurophysiological basis of musicality in human subjects, Neurosci. Lett. 226, 1–4 (1997)

    Article  Google Scholar 

  101. V. Putkinen, M. Tervaniemi, K. Saarikivi, P. Ojala, M. Huotilainen: Enhanced auditory change detection in musically trained school-aged children: A longitudinal event-related potential study, Development. Sci. 17, 282–297 (2014)

    Article  Google Scholar 

  102. E. Brattico, K.J. Pallesen, O. Varyagina, C. Bailey, I. Anourova, M. Järvenpää, T. Eerola, M. Tervaniemi: Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study, J. Cogn. Neurosci. 21(11), 2230–2244 (2009)

    Article  Google Scholar 

  103. G. Musacchia, D. Strait, N. Kraus: Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians, Hearing Res. 241(1-2), 34–42 (2008)

    Article  Google Scholar 

  104. P.C. Wong, E. Skoe, N.M. Russo, T. Dees, N. Kraus: Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nature Neurosci. 10(4), 420–422 (2007)

    Article  Google Scholar 

  105. G.M. Bidelman, M.W. Weiss, S. Moreno, C. Alain: Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians, Eur. J. Neurosci. 40(4), 2662–2673 (2014)

    Article  Google Scholar 

  106. J. Kühnis, S. Elmer, M. Meyer, L. Jäncke: The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study, Neuropsychologia 51(8), 1608–1618 (2013)

    Article  Google Scholar 

  107. R. Milovanov, M. Huotilainen, V. Välimäki, P.A. Esquef, M. Tervaniemi: Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence, Brain Res. 1194, 81–89 (2008)

    Article  Google Scholar 

  108. J. Ayotte, I. Peretz, K. Hyde: Congenital amusia: A group study of adults afflicted with a music-specific disorder, Brain 125(2), 238–251 (2002)

    Article  Google Scholar 

  109. P. Albouy, J. Mattout, R. Bouet, E. Maby, G. Sanchez, P.E. Aguera, S. Daligault, C. Delpuech, O. Bertrand, A. Caclin, B. Tillmann: Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex, Brain 136(5), 1639–1661 (2013)

    Article  Google Scholar 

  110. I. Peretz, E. Brattico, M. Tervaniemi: Abnormal electrical brain responses to pitch in congenital amusia, Ann. Neurol. 58(3), 478–482 (2005)

    Article  Google Scholar 

  111. P. Moreau, P. Jolicœur, I. Peretz: Pitch discrimination without awareness in congenital amusia: Evidence from event-related potentials, Brain Cogn. 81(3), 337–344 (2013)

    Article  Google Scholar 

  112. B. Tillmann, K. Schulze, J.M. Foxton: Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds, Brain Cogn. 71, 259–264 (2009)

    Article  Google Scholar 

  113. I. Peretz, E. Brattico, M. Järvenpää, M. Tervaniemi: The amusic brain: In tune, out of key, and unaware, Brain 132(5), 1277–1286 (2009)

    Article  Google Scholar 

  114. G. Mignault Goulet, P. Moreau, N. Robitaille, I. Peretz: Congenital amusia persists in the developing brain after daily music listening, PLoS One 7(5), e36860 (2012)

    Article  Google Scholar 

  115. S. Koelsch, M. Wittfoth, A. Wolf, J. Muller, A. Hahne: Music perception in cochlear implant users: An event-related potential study, Clin. Neurophysiol. 115, 966–972 (2004)

    Article  Google Scholar 

  116. C.J. Limb, J.T. Rubinstein: Current research on music perception in cochlear implant users, Otolaryngol. Clin. N. Am. 45, 129–140 (2012)

    Article  Google Scholar 

  117. L. Timm, P. Vuust, E. Brattico, D. Agrawal, S. Debener, A. Büchner, R. Dengler, M. Wittfoth: Residual neural processing of musical sound features in adult cochlear implant users, Front. Hum. Neurosci. 8, 181 (2014)

    Article  Google Scholar 

  118. C.G. Jung: On the importance of the unconscious in psychopathology, Br. Med. J. 2, 964–968 (1914)

    Article  Google Scholar 

  119. B. Gold, M.J. Frank, B. Bogert, E. Brattico: Pleasurable music affects reinforcement learning according to the listener, Front. Psychol. 4, 541 (2013), https://doi.org/10.3389/fpsyg.2013.00541

    Article  Google Scholar 

  120. T. Quarto, G. Blasi, K.J. Pallesen, A. Bertolino, E. Brattico: Implicit processing of visual emotions is affected by sound-induced affective states and individual affective traits, PLoS One 9(7), e103278 (2014), https://doi.org/10.1371/journal.pone.0103278

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elvira Brattico .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brattico, E., Olcese, C., Tervaniemi, M. (2018). Automatic Processing of Musical Sounds in the Human Brain. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics