Automatic Processing of Musical Sounds in the Human Brain

  • Elvira BratticoEmail author
  • Chiara Olcese
  • Mari Tervaniemi
Part of the Springer Handbooks book series (SHB)


This chapter introduces neurophysiological evidence on the dissociation between unconscious and conscious aspects of musical sound perception. The focus is on research conducted with the event-related potential (ERP ) technique, which allows chronometric investigation of information-processing stages during music listening. Findings suggest that automatic processes are confined to the auditory cortex and might even involve the discrimination of deviations from simple musical scale rules. In turn, voluntary, cognitive processes, likely originating from the inferior prefrontal cortex, are necessary to understand more complex musical rules, such as tonality and harmony. The implications of understanding how and to what extent music is processed below the level of consciousness are discussed in rehabilitation and therapeutic settings.


Brodmann area 44


cochlear implant




early right anterior negativity


event-related potential


functional magnetic resonance imaging




mismatch negativity


magnetic mismatch negativity


optical imaging


positron emission tomography


  1. 22.1
    J.R. Anderson: Cognitive Psychology and its Implications (Worth, Duffield 2004)Google Scholar
  2. 22.2
    P. Vuust, E. Brattico, E. Glerean, M. Seppänen, S. Pakarinen, M. Tervaniemi, R. Näätänen: New fast mismatch negativity paradigm for determining the neural prerequisites for musical ability, Cortex 47(9), 1091–1098 (2011)CrossRefGoogle Scholar
  3. 22.3
    S.A. Hillyard, R.F. Hink, V.L. Schwent, T.W. Picton: Electrical signs of selective attention in the human brain, Science 182, 180 (1973)CrossRefGoogle Scholar
  4. 22.4
    U. Neisser: Cognitive Psychology: CT, US (Appletion-Century-Crofts, East Norwalk 1967)Google Scholar
  5. 22.5
    A.M. Treisman, G. Gelade: A feature-integration theory of attention, Cogn. Psychol. 12(1), 97–136 (1980)CrossRefGoogle Scholar
  6. 22.6
    R. Näätänen: Attention and Brain Function (Lawrence Erlbaum Associates, Hillsdale 1992)Google Scholar
  7. 22.7
    N. Cowan: Attention and Memory: An Integrated Framework (Oxford Univ. Press, New York 1995)Google Scholar
  8. 22.8
    J.T. Coull: Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology, Prog. Neurobiol. 55(4), 343–361 (1998)CrossRefGoogle Scholar
  9. 22.9
    M. Posner: Neuropsychology: Modulation by instruction, Nature 373(6511), 198–199 (1995)CrossRefGoogle Scholar
  10. 22.10
    L. Jäncke, S. Mirzazade, N.J. Shah: Attention modulates activity in the primary and the secondary auditory cortex: A functional magnetic resonance imaging study in human subjects, Neurosci. Lett. 266(2), 125–128 (1999)CrossRefGoogle Scholar
  11. 22.11
    C.I. Petkov, X. Kang, K. Alho, O. Bertrand, E.W. Yund, D.L. Woods: Attentional modulation of human auditory cortex, Nat. Neurosci. 7(6), 658–663 (2004)CrossRefGoogle Scholar
  12. 22.12
    T.W. Picton, A. Durieux-Smith: Auditory evoked potentials in the assessment of hearing, Neurol. Clin. 6(4), 791–808 (1988)Google Scholar
  13. 22.13
    M.D. Rugg, M.G.H. Coles (Eds.): Electrophysiology of Mind: Event-Related Brain Potentials and Cognition (Oxford Univ. Press, Oxford 1995)Google Scholar
  14. 22.14
    C.L. Krumhansl, P. Toivanen, T. Eerola, P. Toiviainen, T. Järvinen, J. Louhivuori: Cross-cultural music cognition: Cognitive methodology applied to north sami yoiks, Cognition 76(1), 13–58 (2000)CrossRefGoogle Scholar
  15. 22.15
    B. Snyder: Music and Memory: An Introduction (MIT Press, Cambridge 2000)Google Scholar
  16. 22.16
    D. Schön, M. Besson: Audiovisual interactions in music reading. A reaction times and event-related potentials study, Ann. N.Y. Acad. Sci. 999, 193–198 (2003)CrossRefGoogle Scholar
  17. 22.17
    V.J. Schmithorst: Separate cortical networks involved in music perception: Preliminary functional MRI evidence for modularity of music processing, Neuroimage 25(2), 444–551 (2005)CrossRefGoogle Scholar
  18. 22.18
    A.J. Lonsdale, A.C. North: Why do we listen to music? A uses and gratification analysis, Br. J. Psychol. 102(1), 108–134 (2011)CrossRefGoogle Scholar
  19. 22.19
    R. Näätänen, A.W. Gaillard, S. Mäntysalo: Early selective-attention effect reinterpreted, Acta Psychologica 42, 313–329 (1978)CrossRefGoogle Scholar
  20. 22.20
    R. Näätänen: Mismatch negativity: Clinical research and possible applications, Int. J. Psychophysiol. 48, 179–188 (2003)CrossRefGoogle Scholar
  21. 22.21
    H. Lang, T. Nyrke, M. Ek, O. Aaltonen, I. Raimo, R. Näätänen: Pitch discrimination performance and auditory event–related potentials. In: Psychophysiological Brain Research, ed. by C.H.M. Brunia, A.W.K. Gaillard, A. Kok, G. Mulder, M.N. Verbaten (Tilburg Univ. Press, Tilburg 1990) pp. 294–298Google Scholar
  22. 22.22
    M. Tervaniemi, M. Huotilainen, E. Brattico: Melodic multi-feature paradigm reveals auditory profiles in music-sound encoding, Front. Hum. Neurosci. 8, 496 (2014)CrossRefGoogle Scholar
  23. 22.23
    H. Tiitinen, P. May, K. Reinikainen, R. Näätänen: Attentive novelty detection in humans is governed by pre-attentive sensory memory, Nature 372, 90–92 (1994)CrossRefGoogle Scholar
  24. 22.24
    R. Näätänen, E. Schröger, S. Karakas, M. Tervaniemi, P. Paavilainen: Development of a memory trace for a complex sound in the human brain, NeuroReport 4, 503–506 (1993)CrossRefGoogle Scholar
  25. 22.25
    E. Schröger: On the detection of auditory deviations: A pre-attentive activation model, Psychophysiology 34(3), 245–257 (1997)CrossRefGoogle Scholar
  26. 22.26
    M. Tervaniemi, J. Saarinen, P. Paavilainen, N. Danilova, R. Näätänen: Temporal integration of auditory information in sensory memory as reflected by the mismatch negativity, Biol. Psychol. 38, 157–167 (1994)CrossRefGoogle Scholar
  27. 22.27
    H. Yabe, M. Tervaniemi, K. Reinikainen, R. Näätänen: Temporal window of integration revealed by MMN to sound omission, NeuroReport 8, 1971–1974 (1997)CrossRefGoogle Scholar
  28. 22.28
    H. Yabe, M. Tervaniemi, J. Sinkkonen, M. Huotilainen, R.J. Ilmoniemi, R. Näätänen: The temporal window of integration of auditory information in the human brain, Psychophysiology 35, 615–619 (1998)CrossRefGoogle Scholar
  29. 22.29
    E. Brattico, M. Tervaniemi, R. Näätänen: Context effects on pitch perception in musicians and nonmusicians: Evidence from event-related potential recordings, Music Perception 19, 1–24 (2001)CrossRefGoogle Scholar
  30. 22.30
    I. Winkler, G. Karmos, R. Näätänen: Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event – related potential, Brain Res. 742, 239–252 (1996)CrossRefGoogle Scholar
  31. 22.31
    K. Friston: A theory of cortical responses, Philos. Trans. R. Soc. B 360, 815–836 (2005)CrossRefGoogle Scholar
  32. 22.32
    R. Näätänen, S. Pakarinen, T. Rinne, R. Takegata: The mismatch negativity (MMN): Towards the optimal paradigm, Clin. Neurophysiol. 115(1), 140–144 (2004)CrossRefGoogle Scholar
  33. 22.33
    V. Putkinen, M. Tervaniemi, K. Saarikivi, N. De Vent, M. Huotilainen: Investigating the effects of musical training on functional brain development with a novel melodic MMN paradigm, Neurobiol. Learn. Mem. 110, 8–15 (2014)CrossRefGoogle Scholar
  34. 22.34
    T. Särkämö, M. Tervaniemi, S. Laitinen, A. Numminen, M. Kurki, J.K. Johnson, P. Rantanen: Cognitive, emotional, and social benefits of regular musical activities in early dementia: Randomized controlled study, Gerontologist 54(4), 634–650 (2014)CrossRefGoogle Scholar
  35. 22.35
    E. Partanen, R. Torppa, J. Pykäläinen, T. Kujala, M. Huotilainen: Children’s brain responses to sound changes in pseudo words in a multifeature paradigm, Clin. Neurophysiol. 124(6), 1132–1138 (2013)CrossRefGoogle Scholar
  36. 22.36
    R. Torppa, E. Salo, T. Makkonen, H. Loimo, J. Pykäläinen, J. Lipsanen, A. Faulkner, M. Huotilainen: Cortical processing of musical sounds in children with Cochlear Implants, Clin. Neurophysiol. 123(10), 1966–1979 (2012)CrossRefGoogle Scholar
  37. 22.37
    B. Petersen, E. Weed, P. Sandmann, E. Brattico, M. Hansen, S. Derdau Sørensen, P. Vuust: Brain responses to musical feature changes in adolescent cochlear implant users, Front. Hum. Neurosci. 9, 7 (2015), CrossRefGoogle Scholar
  38. 22.38
    M. Sams, R. Hari, J. Rif, J. Knuutila: The human auditory sensory memory trace persists about 10 msec: Neuromagnetic evidence, J. Cogn. Neurosci. 5, 363–370 (1993)CrossRefGoogle Scholar
  39. 22.39
    C. Böttscher–Gandor, P. Ullsperger: Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval, Psychophysiology 29, 546–550 (1992)CrossRefGoogle Scholar
  40. 22.40
    N. Cowan: On short and long auditory stores, Psychol. Bull. 96, 341–370 (1984)CrossRefGoogle Scholar
  41. 22.41
    I. Winkler, R. Näätänen: Event-related potentials in auditory backward recognition masking: A new way to study the neurophysiological basis of sensory memory in humans, Neurosci. Lett. 140, 239–242 (1992)CrossRefGoogle Scholar
  42. 22.42
    R. Näätänen: Mismatch negativity (MMN) as an index of central auditory system plasticity, Int. J. Audiol. 47(2), S16–S20 (2008)CrossRefGoogle Scholar
  43. 22.43
    E. Schröger, M. Tervaniemi, M. Huotilainen: Bottom–up and top–down flows of information within auditory memory: Electrophysiological evidence. In: Psychophysics Beyond Sensation: Laws and Invariants of Human Cognition, ed. by C. Kaernbach, E. Schröger, H. Müller (Erlbaum, Hillsdale 2004) pp. 389–407Google Scholar
  44. 22.44
    P. Celsis, K. Boulanouar, B. Doyon, J.P. Ranjeva, I. Berry, J.L. Nespoulous, F. Chollet: Differential fMRI responses in the left posterior superior temporal gyrus and left supramarginal gyrus to habituation and change detection in syllables and tones, Neuroimage 9, 135–144 (1999)CrossRefGoogle Scholar
  45. 22.45
    U. Schall, P. Johnston, J. Todd, P.B. Ward, P.T. Michie: Functional neuroanatomy of auditory mismatch processing: An event-related fMRI study of duration-deviant oddballs, Neuroimage 20, 729–736 (2003)CrossRefGoogle Scholar
  46. 22.46
    S. Molholm, A. Martinez, W. Ritter, D.C. Javitt, J.J. Foxe: The neural circuitry of pre-attentive auditory change-detection: An fMRI study of pitch and duration mismatch negativity generators, Cereb. Cortex 15, 545–551 (2005)CrossRefGoogle Scholar
  47. 22.47
    T. Rinne, A. Degerman, K. Alho: Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: An fMRI study, Neuroimage 26, 66–72 (2005)CrossRefGoogle Scholar
  48. 22.48
    A.K. Lee, E. Larson, R.K. Maddox, B.G. Shinn–Cunningham: Using neuroimaging to understand the cortical mechanisms of auditory selective attention, Hearing Res. 307, 111–120 (2014)CrossRefGoogle Scholar
  49. 22.49
    C. Lappe, O. Steinsträter, C. Pantev: A beamformer analysis of MEG data reveals frontal generators of the musically elicited mismatch negativity, PLoS One 8(4), e61296 (2013)CrossRefGoogle Scholar
  50. 22.50
    K. Alho, T. Rinne, T.J. Herron, D.L. Woods: Stimulus-dependent activations and attention-related modulations in the auditory cortex: a metaanalysis of fMRI studies, Hear. Res. 307, 29–41 (2014)CrossRefGoogle Scholar
  51. 22.51
    T. Särkämö, E. Pihko, S. Laitinen, A. Forsblom, S. Soinila, M. Mikkonen, T. Autti, H.M. Silvennoinen, J. Erkkilä, M. Laine, I. Peretz, M. Hietanen, M. Tervaniemi: Music and speech listening enhance the recovery of early sensory processing after stroke, J. Cogn. Neurosci. 22(12), 2716–2727 (2010)CrossRefGoogle Scholar
  52. 22.52
    M. Tervaniemi, E. Shröger, M. Saher, R. Näätänen: Effects of spectral complexity and sound duration in complex-sound pitch processing in humans-a mismatch negativity study, Neurosci. Lett. 290, 66–70 (2000)CrossRefGoogle Scholar
  53. 22.53
    A. Dittmann–Balcar, M. Juptner, W. Jentzen, U. Schall: Dorsolateral prefrontal cortex activation during automatic auditory duration mismatch processing in humans: A positron emission tomography study, Neurosci. Lett. 308, 119–122 (2001)CrossRefGoogle Scholar
  54. 22.54
    B.W. Müller, M. Juptner, W. Jentzen, S.P. Müller: Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: A pet study, NeuroImage 17, 231–239 (2002)CrossRefGoogle Scholar
  55. 22.55
    C.F. Doeller, B. Opitz, A. Mecklinger, C. Krick, W. Reith, E. Schröger: Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence, NeuroImage 20, 1270–1282 (2004)CrossRefGoogle Scholar
  56. 22.56
    C.Y. Tse, T.B. Penney: On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance, NeuroImage 41, 1462–1470 (2008)CrossRefGoogle Scholar
  57. 22.57
    C.Y. Tse, T. Rinne, K.K. Ng, T.B. Penney: The functional role of the frontal cortex in pre–attentive auditory change detection, NeuroImage 19(83C), 870–879 (2013)CrossRefGoogle Scholar
  58. 22.58
    K. Alho: Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes, Ear Hearing 16, 38–51 (1995)CrossRefGoogle Scholar
  59. 22.59
    M.H. Giard, F. Perrin, J. Pernier, P. Bouchet: Brain generators implicated in processing of auditory stimulus deviance: A topographic event-related potential study, Psychophysiology 27, 627–640 (1990)CrossRefGoogle Scholar
  60. 22.60
    R. Näätänen, P.T. Michie: Early selective attention effects on the evoked potential: A critical review and reinterpretation, Biol. Psychol. 8, 81–136 (1979)CrossRefGoogle Scholar
  61. 22.61
    T. Rinne, R.J. Ilmoniemi, J. Sinkkonen, J. Virtanen, R. Näätänen: Separate time behaviors of the temporal and frontal MMN sources, Neuroimage 12, 14–19 (2000)CrossRefGoogle Scholar
  62. 22.62
    R. Näätänen: The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function, The Behav. Brain Sci. 13, 201–288 (1990)CrossRefGoogle Scholar
  63. 22.63
    K. Alho, C. Escera, R. Diaz, E. Yago, J.M. Serra: Effects of involuntary auditory attention on visual task performance and brain activity, NeuroReport 8, 3233–3237 (1997)CrossRefGoogle Scholar
  64. 22.64
    M.H. Giard, J. Lavikainen, K. Reinikainen, F. Perrin, O. Bertrand, J. Pernier, R. Näätänen: Separate representation of stimulus frequency, intensity, and duration in auditory sensory memory: An event-related potential and dipole-model analysis, J. Cogn. Neurosci. 7, 133–143 (1995)CrossRefGoogle Scholar
  65. 22.65
    S. Levänen, A. Ahonen, R. Hari, L. McEvoy, M. Sams: Deviant auditory stimuli activate human left and right auditory cortex differently, Cereb. Cortex 6, 288–296 (1996)CrossRefGoogle Scholar
  66. 22.66
    S. Levänen, R. Hari, L. McEvoy, M. Sams: Responses of the human auditory cortex to changes in one versus two stimulus features, Exp. Brain Res. 97, 177–183 (1993)CrossRefGoogle Scholar
  67. 22.67
    K. Alho, M. Tervaniemi, M. Huotilainen, J. Lavikainen, H. Tiitinen, R.J. Ilmoniemi, J. Knuutila, R. Näätänen: Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses, Psychophysiology 33, 369–375 (1996)CrossRefGoogle Scholar
  68. 22.68
    M. Tervaniemi, A. Kujala, K. Alho, J. Virtanen, R.J. Ilmoniemi, R. Näätänen: Functional specialization of the human auditory cortex in processing phonetic and musical sounds: A magnetoencephalographic (MEG) study, NeuroImage 9, 330–336 (1999)CrossRefGoogle Scholar
  69. 22.69
    M. Tervaniemi, A.J. Szameitat, S. Kruck, E. Schröger, K. Alter, W. De Baene, A.D. Friederici: From air oscillations to music and speech: Functional magnetic resonance imaging evidence for fine-tuned neural networks in audition, J. Neurosci. 26(34), 8647–8652 (2006)CrossRefGoogle Scholar
  70. 22.70
    M. Tervaniemi, S. Maury, R. Näätänen: Neural representations of abstract stimulus features in the human brain as reflected by the mismatch negativity, NeuroReport 5, 844–846 (1994)CrossRefGoogle Scholar
  71. 22.71
    P. Paavilainen, M. Jaramillo, R. Näätänen: Binaural information can converge in abstract memory traces, Psychophysiology 35, 483–487 (1998)CrossRefGoogle Scholar
  72. 22.72
    P. Paavilainen, J. Saarinen, M. Tervaniemi, R. Näätänen: Mismatch negativity to changes in abstract sound features during dichotic listening, Int. J. Psychophysiol. 9, 243–249 (1995)Google Scholar
  73. 22.73
    J. Saarinen, P. Paavilainen, E. Schröger, M. Tervaniemi, R. Näätänen: Representation of abstract stimulus attributes in human brain, NeuroReport 3, 1149–1151 (1992)CrossRefGoogle Scholar
  74. 22.74
    O.A. Korzyukov, I. Winkler, V.I. Gumenyuk, K. Alho: Processing abstract auditory features in the human auditory cortex, NeuroImage 20(4), 2245–2258 (2003)CrossRefGoogle Scholar
  75. 22.75
    P. Paavilainen, P. Arajärvi, R. Takegata: Preattentive detection of nonsalient contingencies between auditory features, NeuroReport 18, 159–163 (2007)CrossRefGoogle Scholar
  76. 22.76
    P. Paavilainen, A. Degerman, R. Takegata, I. Winkler: Spectral and temporal stimulus characteristics in the processing of abstract auditory features, NeuroReport 14(5), 715–718 (2003)CrossRefGoogle Scholar
  77. 22.77
    E. Schröger, A. Bendixen, N.J. Trujillo–Barreto, U. Roeber: Processing of abstract rule violations in audition, PLoS ONE 2, e1131 (2007)CrossRefGoogle Scholar
  78. 22.78
    P. Paavilainen, J. Simola, M. Jaramillo, R. Näätänen, I. Winkler: Preattentive extraction of abstract feature conjunctions from auditory stimulation as reflected by the mismatch negativity (MMN), Psychophysiology 38(2), 359–365 (2001)CrossRefGoogle Scholar
  79. 22.79
    D.J. Levitin, A.K. Tirovolas: Current advances in the cognitive neuroscience of music, Ann. N.Y. Acad. Sci. 1156, 211–231 (2009)CrossRefGoogle Scholar
  80. 22.80
    E. Narmour: The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model (Univ. of Chicago Press, Chicago 1990)Google Scholar
  81. 22.81
    E. Brattico, M. Tervaniemi, R. Näätänen, I. Peretz: Musical scale properties are automatically processed in the human auditory cortex, Brain Res. 1117(1), 162–174 (2006)CrossRefGoogle Scholar
  82. 22.82
    R. Näätänen, M. Tervaniemi, E. Sussman, P. Paavilainen, I. Winkler: Primitive intelligence in the auditory cortex, Trends Neurosci. 24(5), 283–288 (2001)CrossRefGoogle Scholar
  83. 22.83
    E. Brattico, R. Näätänen, T. Verma, V. Välimäki, M. Tervaniemi: Processing of musical intervals in the central auditory system: An eventrelated potential (ERP) study on sensory consonance. In: Proc. Sixth Int. Conf. Music Percept. Cognit., Keele, ed. by C. Woods, G. Luck, R. Brochard, F. Seddon, J.A. Sloboda (Keele University, Department of Psychology, Keele 2000) pp. 1110–1119, CD-ROMGoogle Scholar
  84. 22.84
    P. Virtala, V. Berg, M. Kivioja, J. Purhonen, M. Salmenkivi, P. Paavilainen, M. Tervaniemi: The preattentive processing of major vs. minor chords in the human brain: An event-related potential study, Neurosci. Lett. 487(3), 406–410 (2011)CrossRefGoogle Scholar
  85. 22.85
    P. Virtala, V. Putkinen, M. Huotilainen, T. Makkonen, M. Tervaniemi: Musical training facilitates the neural discrimination of major vs. minor chords in 13-year-old children, Psychophysiology 49, 1125–1132 (2012)Google Scholar
  86. 22.86
    P. Virtala, M. Huotilainen, E. Partanen, V. Fellman, M. Tervaniemi: Newborn infants’ auditory system is sensitive to Western music chord categories, Front. Psychol. 4, 492 (2013)CrossRefGoogle Scholar
  87. 22.87
    P. Virtala, M. Huotilainen, E. Partanen, M. Tervaniemi: Musicianship facilitates the processing of Western music chords – An ERP and behavioural study, Neuropsychologia 61, 247–258 (2014)CrossRefGoogle Scholar
  88. 22.88
    S. Koelsch: Toward a neural basis of music perception – A review and updated model, Front. Psychol. 2, 110 (2013), CrossRefGoogle Scholar
  89. 22.89
    S. Koelsch, E. Schröger, T.C. Gunter: Music matters: Preattentive musicality of the human brain, Psychophysiology 39(1), 38–48 (2002)CrossRefGoogle Scholar
  90. 22.90
    P. Loui, T. Grent-’T-Jong, D. Torpey, M. Woldorff: Effects of attention on the neural processing of harmonic syntax in Western music, Cogn. Brain Res. 25(3), 678–687 (2005)CrossRefGoogle Scholar
  91. 22.91
    S. Koelsch, B.H. Schmidt, J. Kansok: Effects of musical expertise on the early right anterior negativity: An event-related brain potential study, Psychophysiology 39(5), 657–663 (2002)CrossRefGoogle Scholar
  92. 22.92
    E. Brattico, T. Tupala, E. Glerean, M. Tervaniemi: Modulated neural processing of Western harmony in folk musicians, Psychophysiology 50(7), 653–663 (2013)CrossRefGoogle Scholar
  93. 22.93
    E.R. Kandel: The molecular biology of memory storage: A dialogue between genes and synapses, Science 294(5544), 1030–1038 (2001)CrossRefGoogle Scholar
  94. 22.94
    M. Beauchemin, L. De Beaumont, P. Vannasing, A. Turcotte, C. Arcand, P. Belin, M. Lassonde: Electrophysiological markers of voice familiarity, Eur. J. Neurosci. 23, 3081–3086 (2006)CrossRefGoogle Scholar
  95. 22.95
    O. Hauk, Y. Shtyrov, F. Pulvermuller: The sound of actions as reflected by mismatch negativity: Rapid activation of cortical sensory-motor networks by sounds associated with finger and tongue movements, Eur. J. Neurosci. 23, 811–821 (2006)CrossRefGoogle Scholar
  96. 22.96
    S. Koelsch, E. Schröger, M. Tervaniemi: Superior attentive and pre-attentive auditory processing in musicians, NeuroReport 10, 1309–1313 (1999)CrossRefGoogle Scholar
  97. 22.97
    M. Seppänen, E. Brattico, M. Tervaniemi: Practice strategies of musicians modulate neural processing and the learning of sound–patterns, Neurobiol. Learn. Mem. 87(2), 236–247 (2007)CrossRefGoogle Scholar
  98. 22.98
    T. Fujioka, L.J. Trainor, B. Ross, R. Kakigi, C. Pantev: Musical training enhances automatic encoding of melodic contour and interval structure, J. Cogn. Neurosci. 16(6), 1010–1021 (2004)CrossRefGoogle Scholar
  99. 22.99
    P. Vuust, E. Brattico, M. Seppänen, R. Näätänen, M. Tervaniemi: The sound of music: Differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm, Neuropsychologia 50(7), 1432–1443 (2012)CrossRefGoogle Scholar
  100. 22.100
    M. Tervaniemi, T. Ilvonen, K. Karma, K. Alho, R. Näätänen: The musical brain: Brain waves reveal the neurophysiological basis of musicality in human subjects, Neurosci. Lett. 226, 1–4 (1997)CrossRefGoogle Scholar
  101. 22.101
    V. Putkinen, M. Tervaniemi, K. Saarikivi, P. Ojala, M. Huotilainen: Enhanced auditory change detection in musically trained school-aged children: A longitudinal event-related potential study, Development. Sci. 17, 282–297 (2014)CrossRefGoogle Scholar
  102. 22.102
    E. Brattico, K.J. Pallesen, O. Varyagina, C. Bailey, I. Anourova, M. Järvenpää, T. Eerola, M. Tervaniemi: Neural discrimination of nonprototypical chords in music experts and laymen: An MEG study, J. Cogn. Neurosci. 21(11), 2230–2244 (2009)CrossRefGoogle Scholar
  103. 22.103
    G. Musacchia, D. Strait, N. Kraus: Relationships between behavior, brainstem and cortical encoding of seen and heard speech in musicians and non-musicians, Hearing Res. 241(1-2), 34–42 (2008)CrossRefGoogle Scholar
  104. 22.104
    P.C. Wong, E. Skoe, N.M. Russo, T. Dees, N. Kraus: Musical experience shapes human brainstem encoding of linguistic pitch patterns, Nature Neurosci. 10(4), 420–422 (2007)CrossRefGoogle Scholar
  105. 22.105
    G.M. Bidelman, M.W. Weiss, S. Moreno, C. Alain: Coordinated plasticity in brainstem and auditory cortex contributes to enhanced categorical speech perception in musicians, Eur. J. Neurosci. 40(4), 2662–2673 (2014)CrossRefGoogle Scholar
  106. 22.106
    J. Kühnis, S. Elmer, M. Meyer, L. Jäncke: The encoding of vowels and temporal speech cues in the auditory cortex of professional musicians: An EEG study, Neuropsychologia 51(8), 1608–1618 (2013)CrossRefGoogle Scholar
  107. 22.107
    R. Milovanov, M. Huotilainen, V. Välimäki, P.A. Esquef, M. Tervaniemi: Musical aptitude and second language pronunciation skills in school-aged children: Neural and behavioral evidence, Brain Res. 1194, 81–89 (2008)CrossRefGoogle Scholar
  108. 22.108
    J. Ayotte, I. Peretz, K. Hyde: Congenital amusia: A group study of adults afflicted with a music-specific disorder, Brain 125(2), 238–251 (2002)CrossRefGoogle Scholar
  109. 22.109
    P. Albouy, J. Mattout, R. Bouet, E. Maby, G. Sanchez, P.E. Aguera, S. Daligault, C. Delpuech, O. Bertrand, A. Caclin, B. Tillmann: Impaired pitch perception and memory in congenital amusia: The deficit starts in the auditory cortex, Brain 136(5), 1639–1661 (2013)CrossRefGoogle Scholar
  110. 22.110
    I. Peretz, E. Brattico, M. Tervaniemi: Abnormal electrical brain responses to pitch in congenital amusia, Ann. Neurol. 58(3), 478–482 (2005)CrossRefGoogle Scholar
  111. 22.111
    P. Moreau, P. Jolicœur, I. Peretz: Pitch discrimination without awareness in congenital amusia: Evidence from event-related potentials, Brain Cogn. 81(3), 337–344 (2013)CrossRefGoogle Scholar
  112. 22.112
    B. Tillmann, K. Schulze, J.M. Foxton: Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds, Brain Cogn. 71, 259–264 (2009)CrossRefGoogle Scholar
  113. 22.113
    I. Peretz, E. Brattico, M. Järvenpää, M. Tervaniemi: The amusic brain: In tune, out of key, and unaware, Brain 132(5), 1277–1286 (2009)CrossRefGoogle Scholar
  114. 22.114
    G. Mignault Goulet, P. Moreau, N. Robitaille, I. Peretz: Congenital amusia persists in the developing brain after daily music listening, PLoS One 7(5), e36860 (2012)CrossRefGoogle Scholar
  115. 22.115
    S. Koelsch, M. Wittfoth, A. Wolf, J. Muller, A. Hahne: Music perception in cochlear implant users: An event-related potential study, Clin. Neurophysiol. 115, 966–972 (2004)CrossRefGoogle Scholar
  116. 22.116
    C.J. Limb, J.T. Rubinstein: Current research on music perception in cochlear implant users, Otolaryngol. Clin. N. Am. 45, 129–140 (2012)CrossRefGoogle Scholar
  117. 22.117
    L. Timm, P. Vuust, E. Brattico, D. Agrawal, S. Debener, A. Büchner, R. Dengler, M. Wittfoth: Residual neural processing of musical sound features in adult cochlear implant users, Front. Hum. Neurosci. 8, 181 (2014)CrossRefGoogle Scholar
  118. 22.118
    C.G. Jung: On the importance of the unconscious in psychopathology, Br. Med. J. 2, 964–968 (1914)CrossRefGoogle Scholar
  119. 22.119
    B. Gold, M.J. Frank, B. Bogert, E. Brattico: Pleasurable music affects reinforcement learning according to the listener, Front. Psychol. 4, 541 (2013), CrossRefGoogle Scholar
  120. 22.120
    T. Quarto, G. Blasi, K.J. Pallesen, A. Bertolino, E. Brattico: Implicit processing of visual emotions is affected by sound-induced affective states and individual affective traits, PLoS One 9(7), e103278 (2014), CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Elvira Brattico
    • 1
    Email author
  • Chiara Olcese
    • 2
  • Mari Tervaniemi
    • 3
  1. 1.Department of Clinical MedicineAarhus UniversityAarhusDenmark
  2. 2.Dept. of Life Sciences and BiotechnologyUniversity of FerraraTrevisoItaly
  3. 3.Cicero Learning and Cognitive Brain Research UnitUniversity of HelsinkiHelsinkiFinland

Personalised recommendations