Real-Time Signal Processing on Field Programmable Gate Array Hardware

  • Florian PfeifleEmail author
Part of the Springer Handbooks book series (SHB)


Over the last 50 years, advances in high-speed digital signal processing (DSP ) and numerical methods for audio signal processing in general were fueled by the rising processing capabilities of personal computers (PC s). Added to this was the advent of specialized coprocessing platforms like general purpose graphics processing units (GPGPU s), central processing unit (CPU )-based accelerators like Intel's Xeon Phi platforms as well as high-performance digital signal processing (DSP ) chips like Analog Devices' TigerSHARC. Still, there are applications that are not realizable on the mentioned devices in real time or even close to real time. This chapter gives an introduction to field programmable gate array (FPGA ) hardware, a flexible computing platform with massively parallel logic capability that is applicable for problems of high data throughput, high clock rates and high parallelism. After an introduction to the basic structure of FPGAs, several features that enable high-throughput DSP applications are highlighted. An introduction to development platforms as well as the development methodology is given, along with an overview of current FPGA devices and their specific capabilities. Two application examples and an outlook and summary complete this chapter.




one's complement




two's complement




analog-to-digital converter


adaptive logic module


application-specific integrated circuit


application-specific standard part


boundary condition


basic linear algebra subprograms


block RAM


computer-aided design




configurable logic block




central processing unit


digital-to-analog converter


double data rate




digital signal processing


electrically erasable programmable read-only memory


erasable programmable read-only memory


finite difference


finite-difference time domain


fast Fourier transform


fastest Fourier transform in the West


first in/first out


finite impulse response


FPGA mezzanine card


field programmable gate array


finite-state machine


general purpose graphics processing unit


graphical user interface


hardware description language


high-level synthesis


high-performance computing




inter-IC sound


infinite impulse response


interface layer


intellectual property


linear time-invariant


look-up table




model routing layer


number theoretic transform


peripheral component interconnect express


pulse code modulation


personal computer


partial differential equation


programmable logic device


programmable read-only memory


random access memory




register transfer level


serial advanced technology attachment


serial peripheral interface


tera floating point operations per second


tera multiply-and-accumulates per second


user constraint file


universal serial bus


very high speed integrated circuit hardware description language


wave digital filter


  1. 20.1
    Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2015–2020 White Paper (Cisco Systems Inc., San Jose 2016) Google Scholar
  2. 20.2
    A. Brandt: Noise and Vibration Analysis: Signal Analysis and Experimental Procedures (Wiley, Chichester 2011)CrossRefGoogle Scholar
  3. 20.3
    E.S. Gopi: Digital Signal Processing for Medical Imaging Using MATLAB (Springer, New York 2013)CrossRefGoogle Scholar
  4. 20.4
    U. Zölzer, X. Amatriain, D. Arfib, J. Bonada, G. De Poli, P. Dutilleux, G. Evangelista, F. Keiler, A. Loscos, D. Rocchesso, M. Sandler, X. Serra, T. Todoroff: DAFX: Digital Audio Effects (Wiley, Chichester 2002)Google Scholar
  5. 20.5
    M. Holters, U. Zölzer: Physical modelling of a wah-wah effect pedal as a case study for application of of the nodal DK method to circuits with variable parts. In: Proc. 14th Int. Conf. Digit. Audio Eff. DAFx-11 (2011) pp. 31–35Google Scholar
  6. 20.6
    D. Arfib: Different ways to write digital audio effects programs. In: Proc. Digit. Audio Eff. (DAFx-98), Barcelona (1998) pp. 188–191Google Scholar
  7. 20.7
    K. Zuse: Der Computer - Mein Lebenswerk (Springer, Berlin, Heidelberg 2010)CrossRefGoogle Scholar
  8. 20.8
    J. Fowers, G. Brown, P. Cooke, G. Stitt: A performance and energy comparison of FPGAs, GPUs, and multicores for sliding-window applications. In: Proc. ACM/SIGDA Int. Symp. Field Prog. Gate Arrays (ACM, New York 2012) pp. 47–56Google Scholar
  9. 20.9
    G.W. Leibnitz: Explication de lárithmétique binaire, Mem. Acad. R. Sci. 3, 85–93 (1703) Google Scholar
  10. 20.10
    F. Perkins: Leibniz and China: A Commerce of Light (Cambridge Univ. Press, Cambridge 2009)Google Scholar
  11. 20.11
    G. Boole: The Mathematical Analysis of Logic (Philosophical Library, New York 1847)zbMATHGoogle Scholar
  12. 20.12
    G. Boole: An Investigation of the Laws of Thought: On Which are Founded the Mathematical Theories of Logic and Probabilities (Dover, Mineola 1854)zbMATHGoogle Scholar
  13. 20.13
    T. Hailperin: Boole’s algebra isn’t Boolean algebra, Math. Mag. 54(4), 173 (1981)MathSciNetCrossRefGoogle Scholar
  14. 20.14
    J. Corcoran: Aristotle’s prior analytics and Boole’s laws of thought, Hist. Phil. Log. 24(4), 261–288 (2003)MathSciNetCrossRefGoogle Scholar
  15. 20.15
    C.E. Shannon: A Symbolic Analysis of Relay and Switching Circuits, Ph.D. Thesis (Massachusetts Insitute of Technology, Cambridge 1940)Google Scholar
  16. 20.16
    B.J. Copeland (Ed.): Colossus: The Secrets of Bletchley Park’s Codebreaking Computers (Oxford Univ. Press, Oxford 2006)Google Scholar
  17. 20.17
    P.E. Ceruzzi: Computing: A Concise History, The MIT Press Essential Knowledge Series (MIT Press, Cambridge 2012)Google Scholar
  18. 20.18
    C. Maxfield: The Design Warriors Guide to FPGAs (Elsevier, Oxford 2004)Google Scholar
  19. 20.19
    L. Wirbel: Remembering Ross Freeman, (EDN Network 2009)
  20. 20.20
    L. Pantaleone, E. Todorivich: Accelerating embedded software processing in a FPGA with PowerPC and Microblaze. In: Natl. Conf. Inform. Eng. Inf. Syst., San Louis (2013)Google Scholar
  21. 20.21
    N. Hemsoth: FPGAs Glimmer on the HPC Horizon, Glint in Hyperscale Sun, (The Next Platform 2015)
  22. 20.22
    T.P. Morgan: Why Hyperscalers And Clouds Are Pushing Intel Into FPGAs, (The Next Platform 2015)
  23. 20.23
    Xilinx: Configurable Logic Block User Guide (Xilinx, San Jose 2010)Google Scholar
  24. 20.24
    Xilinx: Virtex-6 FPGA Configurable Logic Block User Guide (Xilinx, San Jose 2012)Google Scholar
  25. 20.25
    Altera: Stratix V Device Handbook (Altera, San Jose 2015)Google Scholar
  26. 20.26
    D.S. Brown, G.Z. Vranesic: Fundamentals of Digital Logic with VHDL Design, McGraw-Hill Series in Electrical and Computer Engineering, 3rd edn. (McGraw-Hill, New York 2009)Google Scholar
  27. 20.27
    A.V. Pedroni: Circuit Design with VHDL (MIT Press, Cambridge 2004)Google Scholar
  28. 20.28
    J. Reichardt, B. Schwarz: VHDL-Synthese: Entwurf digitaler Schaltungen und Systeme, 4th edn. (Oldenbourg, München 2009)CrossRefGoogle Scholar
  29. 20.29
    J.P. Ashenden: The Designer’s Guide to VHDL, 3rd edn. (Morgan Kaufmann, San Francisco 2010)Google Scholar
  30. 20.30
    P. Pong: FPGA Prototyping by VHDL Examples (Wiley-Interscience, Hoboken 2008)Google Scholar
  31. 20.31
    M. Zwoliński: Digital System Design with VHDL, 2nd edn. (Prentice Hall, Harlow 2004)Google Scholar
  32. 20.32
    J.P. Ashenden: The Designer’s Guide to VHDL, 2nd edn. (Morgan Kaufmann, San Francisco 2002)Google Scholar
  33. 20.33
    A.H. Wilen, J.P. Schade, R. Thornburg: Introduction to PCI Express: A Hardware and Software Developer’s Guide, Engineer to Engineer Series (Intel, Santa Clara 2003)Google Scholar
  34. 20.34
    C. McGinnis: PCI-SIG® Fast Tracks Evolution to 32GT/s with PCI Express 5.0 Architecture, (PCI-SIG 2017)
  35. 20.35
    H. Liebig, T. Flik, M. Menge: Mikroprozessortechnik und Rechnerstrukturen (Springer, London 2005)Google Scholar
  36. 20.36
    C.M. Herbordt, T. VanCourt, Y. Gu, B. Sukhwani, A. Conti, J. Model, D. DiSabello: Achieving high performance with FPGA-based computing, Computer 40, 50–57 (2007)CrossRefGoogle Scholar
  37. 20.37
    U.M. Baese: Digital Signal Processing with Field Programmable Gate Arrays, 2nd edn. (Springer, Berlin, Heidelberg 2007)zbMATHGoogle Scholar
  38. 20.38
    R. Woods (Ed.): FPGA-Based Implementation of Signal Processing Systems (Wiley, Chichester 2008)Google Scholar
  39. 20.39
    B.A. Kahng, J. Lienig, L.I. Markov, J. Hu: VLSI Physical Design: From Graph Partitioning to Timing Closure (Springer, Dordrecht 2011)CrossRefGoogle Scholar
  40. 20.40
    K. Veggeberg, A. Zheng: Real-time noise source identification using programmable gate array FPGA technology, Proc. Meet. Acoust. 5, 2582 (2009)Google Scholar
  41. 20.41
    C. Hai, W. Ping: The high speed implementation of direction-of-arrival estimation algorithm, IEEE Int. Conf. Commun. Circuits Syst. West Sino Expo. 2, 922–925 (2002)Google Scholar
  42. 20.42
    P. Chen, X. Tian, Y. Chen, X. Yang: Delay-sum beamforming on FPGA. In: ICSP 2008 Proc. (2008) pp. 2542–2545Google Scholar
  43. 20.43
    A. Madanayake, L. Bruton, F. Comis, C. Comis: FPGA architectures for real-time 2D/3D FIR/IIR plane wave filters. In: Proc. Int. Symp. Circuits Syst. ISCAS, Vol. 3 (2004)Google Scholar
  44. 20.44
    S. Kai, Y. Xu, S. Jiang, H. Zhu: Converting analog controllers to digital controllers with FPGA. In: 9th Int. Conf. Signal Process. (2008)Google Scholar
  45. 20.45
    O. Maslennikow, A. Sergiyenko: Mapping DSP algorithms into FPGA. In: Int. Symp. Parallel Comput. Electr. Eng. (PARELEC'06), Bialystok (2006) pp. 208–213, CrossRefGoogle Scholar
  46. 20.46
    T. Brich, K. Novacek, A. Khateb: The digital signal processing using FPGA. In: ISSE 2006, 29th Int. Spring Semin. Electron. Technol. (2006) pp. 322–324CrossRefGoogle Scholar
  47. 20.47
    M. Liu, W. Kuehn, Z. Lu, A. Jantsch: System-on-an-FPGA design for real-time particle track recognition in physics experiments. In: 11th Euromicro Conf. Digit. Syst. Design Archit., Methods Tools (2008)Google Scholar
  48. 20.48
    B. von Herzen: Signal processing at 250 mHz using high-performance FPGA’s, IEEE Trans. Very Large Scale Int. (VLSI) Syst. 6(2), 238–246 (1998)CrossRefGoogle Scholar
  49. 20.49
    Z. Wang, R. Jin, J. Geng, Y. Fan: FPGA implementation of downlink DBF calibration. In: Antennas Propag. Soc. Int. Symp. (2005)Google Scholar
  50. 20.50
    K.H. Moustafa, M.F. Ahmed, M. Romeh, A. Fahmy: Real time processing of a lattice wave digital matched filter. In: IEEE Int. Symp. Signal Process. Inf. Techol. ISSPIT (2011) pp. 404–408Google Scholar
  51. 20.51
    S. Thilagam, P. Karthigaikumar: Implementation of adaptive noise canceller using FPGA for real-time applications. In: 2015 2nd Int. Conf. Electr. Commun. Syst. (ICECS), Coimbatore (2015) pp. 1711–1714, CrossRefGoogle Scholar
  52. 20.52
    H.P. Afshar, P. Ienne: Highly versatile DSP blocks for improved FPGA arithmetic performance. In: Proc. IEEE Symp. Field-Prog. Custom Comput. Mach. FCCM (2010) pp. 29–236Google Scholar
  53. 20.53
    L. Struyf, S. De Beugher, D.H. Van Uytsel, F. Kanters, T. Goedemé: The battle of the giants: A case study of GPU vs FPGA optimisation for real-time image processing, Proc. PECCS 1, 112–119 (2014)Google Scholar
  54. 20.54
    W. Chen, P. Kosmas, M. Leeser, C. Rappaport: An FPGA implementation of the two-dimensional finite-difference time-domain (FDTD) algorithm. In: Proc. 2004 (ACM/SIGDA) 12th Int. Symp. Field Prog. Gate Arrays, New York (2004) pp. 213–222Google Scholar
  55. 20.55
    J.A. Gibbons, D.M. Howard, A.M. Tyrrell: FPGA implementation of 1d wave equation for real-time audio synthesis, IEEE Proc. Comput. Digit. Tech. 152(5), 619–631 (2005)CrossRefGoogle Scholar
  56. 20.56
    E. Motuk, R. Woods, S. Bilbao: Implementation of finite-differece schemes for the wave equation on FPGA. In: IEEE Int. Acoust. Speech Signal Process. ICASSP (2005) p. 3Google Scholar
  57. 20.57
    E. Motuk, R. Woods, S. Bilbao, J. McAllistere: Design methodology for real-time FPGA-based sound synthesis, IEEE Trans. Signal Process. 55(12), 5833–5845 (2007)MathSciNetCrossRefGoogle Scholar
  58. 20.58
    H.E. Motuk: System-On-Chip Implementation of Real-Time Finite Difference Based Sound Synthesis, Ph.D. Thesis (Queen’s Univ., Belfast 2006)Google Scholar
  59. 20.59
    G. Martins, M. Barata, L. Gomes: Low cost method to reproduce sound with FPGA. In: IEEE Int. Symp. Ind. Electron. ISIE (2008)Google Scholar
  60. 20.60
    F. Pfeifle, R. Bader: Real-time finite difference physical models of musical instruments on a field programmable gate array (fpga). In: Proc. Int. Conf. Digit. Audio Eff. (DAFx-12), New York (2012) pp. 63–70Google Scholar
  61. 20.61
    F. Pfeifle, R. Bader: Real-time finite difference method physical modeling of musical instruments using field-programmable gate array hardware, J. Audio Eng. Soc. 63(12), 1001–1016 (2015)CrossRefGoogle Scholar
  62. 20.62
    K. Kroschel, K.-D. Kammeyer: Digitale Signalverarbeitung – Filterung und Spektralanalyse mit MATLAB-Übungen, 6th edn. (Vieweg+Teubner, Wiesbaden 2006)zbMATHGoogle Scholar
  63. 20.63
    N.T. Rajapaksha, C. Wijenayake, A. Madanayake, L.T. Bruton: Raster-scanned wave-digital filter architectures for multi-beam 2d IIR broadband beamforming. In: Proc. Int. Conf. Microelectron. ICM (2010) pp. 112–115Google Scholar
  64. 20.64
    H. Li, A. Kummert, S. Schauland, J. Velten: 3D wave digital filter implementation on a virtex2 FPGA board with external SDRAM. In: 2009 Int. Workshop Multidimens. (nD) Syst., Thessaloniki (2009) pp. 1–5, CrossRefGoogle Scholar
  65. 20.65
    S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRefGoogle Scholar
  66. 20.66
    F. Pfeifle, R. Bader: Musical Acoustics, Neurocognition and Psychology of Music, Chapter Real-Time Physical Modelling of a Real Banjo Geometry Using FPGA Hardware Technology (Rolf Bader, Frankfurt am Main 2009) pp. 71–86Google Scholar
  67. 20.67
    F. Pfeifle, R. Bader: Real-time virtual banjo model and measurements using a microphone array, J. Acoust. Soc. Am. 125(4), 2515–2515 (2009)CrossRefGoogle Scholar
  68. 20.68
    F. Pfeifle, R. Bader: Membrane modes and air resonances of the banjo using physical modeling and microphone array measurements, J. Acoust. Soc. Am. 127(3), 1870–1870 (2010)CrossRefGoogle Scholar
  69. 20.69
    S. Bilbao: Robust physical modeling sound synthesis for nonlinear systems, IEEE Signal Process. Mag. 24(2), 32–41 (2007)CrossRefGoogle Scholar
  70. 20.70
    C. Jordan: Calculus of Finite Differences (Chelsea, New York 1950)zbMATHGoogle Scholar
  71. 20.71
    J. Strikwerda: Finite Difference Schemes and Partial Differential Equations, 2nd edn. (SIAM, Philadelphia 2005)zbMATHGoogle Scholar
  72. 20.72
    E. Hairer, C. Lubich, G. Wanner: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, Springer Series in Computational Mathematics, Vol. 31 (Springer, Berlin, Heidelberg 2002)zbMATHGoogle Scholar
  73. 20.73
    R. Bader: Computational Mechanics of the Classical Guitar (Springer, Berlin, Heidelberg 2005)Google Scholar
  74. 20.74
    R. Bader: Nonlinearities in the sound production of the classical guitar. In: Proc. Forum Acust. 2005 (2005) pp. 685–689Google Scholar
  75. 20.75
    B.E. Moore: Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations, Math. Comput. Simul. 80(1), 20–28 (2009)MathSciNetCrossRefGoogle Scholar
  76. 20.76
    D.W. Markiewicz: Survey on Symplectic Integrators (Univ. California, Berkeley 1999) preprint Google Scholar
  77. 20.77
    R. Mclachlan: Symplectic integration of hamiltonian wave equations, Numer. Math. 66, 465–492 (1994)MathSciNetCrossRefGoogle Scholar
  78. 20.78
    R. Courant, K. Friedrichs, H. Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100(1), 32–74 (1928), MathSciNetCrossRefzbMATHGoogle Scholar
  79. 20.79
    L. Verlet: Computer ``experiments'' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159(1), 98–103 (1967)CrossRefGoogle Scholar
  80. 20.80
    K.J. Bathe: Finite-Element Methoden (Springer, Berlin, Heidelberg 2002)CrossRefGoogle Scholar
  81. 20.81
    M. Campbell, P. Campbell: The Science of String Instruments (Springer, New York 2010) pp. 301–315CrossRefGoogle Scholar
  82. 20.82
    B. Geiser: Studien zur Frühgeschichte der Violine. In: Publikationen der Schweizerischen Musikforschenden Gesellschaft, Serie 2 (Gemeinsamer Bibliotheksverbund (GBV)/Verbundzentrale des GBV (VZG), Bern 1974)Google Scholar
  83. 20.83
    D.D. Boyden: The History of Violin Playing from Its Origins to 1761, and Its Relationship to the Violin and Violin Music (Oxford Univ. Press, Oxford 1967)Google Scholar
  84. 20.84
    K.C. Wali: Cremona Violins: A Physicist’s Quest for the Secrets of Stradivari (World Scientific, Hackensack 2010)Google Scholar
  85. 20.85
    D. Ullmann: Chladni und die Entwicklung der Akustik von 1750–1860 (Birkhäuser, Basel 1996)CrossRefGoogle Scholar
  86. 20.86
    H. von Helmholtz: Die Lehre von den Tonempfindungen als physiologische Grundlage für die Theorie der Musik (Friedrich Vieweg und Sohn, Braunschweig 1896)zbMATHGoogle Scholar
  87. 20.87
    L. Cremer: Physik der Geige (Hirzel, Stuttgart 1981)Google Scholar
  88. 20.88
    G. Bissinger, E.G. Williams, N. Valdivia: Violin f-hole contribution to far-field radiation via patch near-field acoustical holography, J. Acoust. Soc. Am. 121(6), 3899–3906 (2007)CrossRefGoogle Scholar
  89. 20.89
    G. Bissinger: The Science of String Instruments (Springer, New York 2010) pp. 317–345CrossRefGoogle Scholar
  90. 20.90
    H.N. Fletcher, T.D. Rossing: Physics of Musical Instruments, 2nd edn. (Springer, New York 2000)zbMATHGoogle Scholar
  91. 20.91
    C.M. Hutchins: Klang und Akustik der Geige, Spektrum Wiss. 2, 112–122 (1981)Google Scholar
  92. 20.92
    J.-L. Florens: Expressive bowing on a virtual string instrument, Lect. Notes Comput. Sci. 2915, 487–496 (2004)CrossRefGoogle Scholar
  93. 20.93
    M. Demoucron: On the Control of Virtual Violins – Physical Modelling and Control of Bowed String Instruments, PhD Thesis (Université Pierre et Marie Curie – Paris VI, Royal Institute of Technology, Stockholm 2008)Google Scholar
  94. 20.94
    E. Maestre: Analysis/synthesis of bowing control applied to violin sound rendering via physical models, Proc. Meet. Acoust. 19(1), 3271 (2013)Google Scholar
  95. 20.95
    J. Woodhouse, P.M. Galluzo: The bowed string as we know it today, Acta Acust. united Acust. 90, 579–589 (2004)Google Scholar
  96. 20.96
    E. Bavu, J. Smith, J. Wolfe: Torsional waves in a bowed string, Acta Acust. united Acust. 91, 241–246 (2005)Google Scholar
  97. 20.97
    A. Chaigne, A. Askenfelt: Numerical simulations of piano strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRefGoogle Scholar
  98. 20.98
    J. Bensa, S. Bilbao, R. Kronland-Martinet, J.O. Smith III: The simulation of piano string vibration: From physical models to finite difference schemes and digital waveguides, J. Acoust. Soc. Am. 114(2), 1095–1107 (2003)CrossRefGoogle Scholar
  99. 20.99
    H.N. Fletcher, T.D. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRefGoogle Scholar
  100. 20.100
    F. Pfeifle, R. Bader: Real-time finite-difference string-bow interaction field programmable gate array (fpga) model coupled to a violin body, J. Acoust. Soc. Am. 130(4), 2507–2507 (2011)CrossRefGoogle Scholar
  101. 20.101
    J. Woodhouse: On the ‘‘bridge hill’’ of the violin, Acta Acust. united Acust. 91, 155–165 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Institute of Systematic MusicologyUniversity of HamburgHamburgGermany

Personalised recommendations