Vibrations and Waves

  • Wilfried Kausel
Part of the Springer Handbooks book series (SHB)


This chapter deals with vibration and wave propagation under the general assumption that amplitudes are sufficiently small in order to neglect nonlinear effects when vibrations or waves are superimposed. It will be shown how wave equations can be derived for strings, bars and air columns and how analytic results can be obtained for some boundary conditions. This chapter will also review techniques for the calculation of resonance frequencies. Finally an introduction into the analysis of real musical instruments in the frequency domain will be given.








root mean square


  1. 2.1
    L. Euler: Introductio in Analysin Infinitorum (M.M.Bousquet, Lausannae 1748) Google Scholar
  2. 2.2
    C.F. Gauss: Theoria residuorum biquadraticorum, commentatio secunda, Göttingische gelehrte Anzeigen 1, 169–178 (1831)Google Scholar
  3. 2.3
    A. Hirschberg, J. Gilbert, R. Msallam, A.P.J. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. (JASA) 99(3), 1754–1758 (1996)CrossRefGoogle Scholar
  4. 2.4
    C. Huygens: Traité de la lumiere (Pieter van der Aa, Leiden 1690) Google Scholar
  5. 2.5
    D.G. Crighton: Propagation of finite amplitude waves in fluids. In: Handbook of Acoustics, ed. by M.J. Crocker (Wiley, New York 1998) pp. 187–202Google Scholar
  6. 2.6
    H.A. Conklin Jr.: Generation of partials due to nonlinear mixing in a stringed instrument, J. Acoust. Soc. Am. (JASA) 105(1), 536–545 (1999)CrossRefGoogle Scholar
  7. 2.7
    B. Bank, L. Sujbert: Generation of longitudinal vibrations in piano strings: From physics to sound synthesis, J. Acoust. Soc. Am. (JASA) 117(4), 2268–2278 (2005)CrossRefGoogle Scholar
  8. 2.8
    E. Bavu, J. Smith, J. Wolfe: Torsional waves in a bowed string, Acta Acustica united with Acustica 91(2), 241–246 (2005)Google Scholar
  9. 2.9
    F. Pinard, B. Laine, H. Vach: Musical quality assessment of clarinet reeds using optical holography, J. Acoust. Soc. Am. (JASA) 113(3), 1736–1742 (2003)CrossRefGoogle Scholar
  10. 2.10
    N.H. Fletcher, T.D. Rossing: The Physics of Musical Instruments, 2nd edn. (Springer, New York 1990)zbMATHGoogle Scholar
  11. 2.11
    W. Kausel: Bore reconstruction of tubular ducts from acoustic input impedance curve, IEEE Trans. Instrum. Meas. 53(4), 1097–1105 (2004)CrossRefGoogle Scholar
  12. 2.12
    J.W.S. Rayleigh: The Theory of Sound, Vol. 2, 2nd edn. (Repr. Dover, New York 1894)zbMATHGoogle Scholar
  13. 2.13
    H. Levine, J. Schwinger: On the radiation of sound from an unflanged circular pipe, Phys. Rev. 73, 383–406 (1948)MathSciNetCrossRefGoogle Scholar
  14. 2.14
    R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. (JASA) 75, 241–254 (1984)CrossRefGoogle Scholar
  15. 2.15
    T. Hélie, X. Rodet: Radiation of a pulsating portion of a sphere: Application to horn radiation, Acustica 89(4), 565–577 (2003)Google Scholar
  16. 2.16
    D. Mapes-Riordan: Horn modeling with conical and cylindrical transmission-line elements, J. Audio Eng. Soc. 41(6), 471–483 (1993)Google Scholar
  17. 2.17
    D.H. Keefe: Woodwind Tone Hole Acoustics and the Spectrum Transformation Function, Ph.D. Thesis (Physics Dept., Case Western Reserve University, Cleveland 1981)Google Scholar
  18. 2.18
    D.H. Keefe: Woodwind air column models, J. Acoust. Soc. Am. (JASA) 88(1), 35–51 (1990)CrossRefGoogle Scholar
  19. 2.19
    D.H. Keefe: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions, J. Acoust. Soc. Am. (JASA) 75(1), 58–62 (1984)CrossRefGoogle Scholar
  20. 2.20
    A.H. Benade: Equivalent circuits for conical waveguides, J. Acoust. Soc. Am. (JASA) 83, 1764–1769 (1988)CrossRefGoogle Scholar
  21. 2.21
    P.M. Morse, U. Ingard: Theoretical Acoustics (Princeton Univ. Press, Princeton 1987) pp. 1–927Google Scholar
  22. 2.22
    C. Valette: The mechanics of vibrating strings. In: Mechanics of Musical Instruments, Courses and Lectures/International Centre for Mechanical Sciences, Vol. 355, ed. by A. Hirschberg, J. Kergomard, G. Weinreich (Springer, Wien 1995) pp. 115–184Google Scholar
  23. 2.23
    I. Testa, G. Evangelista, S. Cavaliere: Physically inspired models for the synthesis of stiff strings with dispersive waveguides, EURASIP J. Adv. Signal Process. 7, 964–977 (2004)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Wilfried Kausel
    • 1
  1. 1.Dept. of Musical AcousticsUniversity of Music and Performing Arts, ViennaViennaAustria

Personalised recommendations