Finite-Difference Schemes in Musical Acoustics: A Tutorial

  • Stefan BilbaoEmail author
  • Brian Hamilton
  • Reginald Harrison
  • Alberto Torin
Part of the Springer Handbooks book series (SHB)


The functioning of musical instruments is well described by systems of partial differential equations. Whether one's interest is in pure musical acoustics or physical modeling of sound synthesis, numerical simulation is a necessary tool, and may be carried out by a variety of means. One approach is to make use of so-called finite-difference or finite-difference time-domain methods, whereby the numerical solution is computed as a recursion operating over a grid. This chapter is intended as a basic tutorial on the design and implementation of such methods, for a variety of simple systems. The 1-D wave equation and simple difference schemes are covered in Sect. 19.1, accompanied by an analysis of numerical dispersion and stability, as well as implementation details via vector-matrix representations. Similar treatments follow for the case of the ideal stiff bar in Sect. 19.2, the acoustic tube in Sect. 19.3, the 2-D and 3-D wave equations in Sect. 19.4, and finally the stiff plate in Sect. 19.5. Some more general nontechnical comments on more complex extensions to nonlinear systems appear in Sect. 19.6.








finite-difference time domain


Gustafsson Kreiss Sundstrom Osher


partial differential equation


  1. 19.1
    R. Courant, K. Friedrichs, H. Lewy: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRefGoogle Scholar
  2. 19.2
    R.D. Richtmyer: Difference Methods for Initial-Value Problems (Interscience, New York 1957)zbMATHGoogle Scholar
  3. 19.3
    G.E. Forsythe, W.R. Wasow: Finite-Difference Methods for Partial Differential Equations (Wiley, New York 1960)zbMATHGoogle Scholar
  4. 19.4
    K.S. Yee: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)CrossRefGoogle Scholar
  5. 19.5
    A. Taflove: Application of the finite-difference time-domain method to sinusoidal steady-state electromagnetic-penetration problems, IEEE Trans. Electromagn. Compat. EMC 22(3), 191–202 (1980)CrossRefGoogle Scholar
  6. 19.6
    P. Ruiz: A Technique for Simulating the Vibrations of Strings with a Digital Computer, Master’s Thesis (Univ. Illinois, Urbana 1969)Google Scholar
  7. 19.7
    L. Hiller, P. Ruiz: Synthesizing musical sounds by solving the wave equation for vibrating objects: Part II, J. Audio Eng. Soc. 19(7), 542–550 (1971)Google Scholar
  8. 19.8
    J. Kelly, C. Lochbaum: Speech synthesis. In: Proc. 4th Int. Congr. Acoust., Copenhagen (1962) pp. 1–4Google Scholar
  9. 19.9
    R. Bacon, J. Bowsher: A discrete model of a struck string, Acustica 41, 21–27 (1978)Google Scholar
  10. 19.10
    X. Boutillon: Model for piano hammers: Experimental determination and digital simulation, J. Acoust. Soc. Am. 83(2), 746–754 (1988)CrossRefGoogle Scholar
  11. 19.11
    A. Chaigne, A. Askenfelt: Numerical simulations of struck strings. I. A physical model for a struck string using finite difference methods, J. Acoust. Soc. Am. 95(2), 1112–1118 (1994)CrossRefGoogle Scholar
  12. 19.12
    S. van Duyne, J.O. Smith III: Physical modelling with the 2-D digital waveguide mesh. In: Proc. Int. Comput. Music Conf., Tokyo (1993) pp. 40–47Google Scholar
  13. 19.13
    F. Fontana, D. Rocchesso: Physical modelling of membranes for percussion instruments, Acta Acust. united Acust. 84(3), 529–542 (1998)Google Scholar
  14. 19.14
    L. Savioja, T. Rinne, T. Takala: Simulation of room acoustics with a 3-D finite-difference mesh. In: Proc. Int. Comput. Music Conf., Århus (1994) pp. 463–466Google Scholar
  15. 19.15
    S. van Duyne, J.O. Smith III: The 3-D tetrahedral digital waveguide mesh with musical applications. In: Proc. Int. Comput. Music Conf., Hong Kong (1996) pp. 9–16Google Scholar
  16. 19.16
    D. Botteldooren: Acoustical finite-difference time-domain simulation in a quasi-Cartesian grid, J. Acoust. Soc. Am. 95(5), 2313–2319 (1994)CrossRefGoogle Scholar
  17. 19.17
    S. Bilbao: Numerical Sound Synthesis: Finite Difference Schemes and Simulation in Musical Acoustics (Wiley, Chichester 2009)CrossRefGoogle Scholar
  18. 19.18
    P. Morse, U. Ingard: Theoretical Acoustics (Princeton University Press, Princeton 1968)Google Scholar
  19. 19.19
    J.O. Smith III: Physical Audio Signal Procesing 2004)Google Scholar
  20. 19.20
    J. Strikwerda: Finite Difference Schemes and Partial Differential Equations (Wadsworth Brooks, Pacific Grove 1989)zbMATHGoogle Scholar
  21. 19.21
    B. Gustafsson, H.-O. Kreiss, J. Oliger: Time Dependent Problems and Difference Methods (Wiley, New York 1995)zbMATHGoogle Scholar
  22. 19.22
    M. Ducceschi, S. Bilbao: Linear stiff string vibrations in musical acoustics: assessment and comparison of models, J. Acoust. Soc. Am. 140(4), 2445 (2016)CrossRefGoogle Scholar
  23. 19.23
    N. Fletcher, T. Rossing: The Physics of Musical Instruments (Springer, New York 1998)CrossRefGoogle Scholar
  24. 19.24
    A.G. Webster: Acoustical impedance, and the theory of horns and of the phonograph, Proc. Natl. Acad. Sci. U.S.A. 5(7), 275–282 (1919)CrossRefGoogle Scholar
  25. 19.25
    M. Campbell, C. Greated: The Musician’s Guide to Acoustics (Oxford University Press, Oxford 1987)Google Scholar
  26. 19.26
    A.H. Benade: On the propagation of sound waves in a cylindrical conduit, J. Acoust. Soc. Am. 44(2), 616–623 (1968)CrossRefGoogle Scholar
  27. 19.27
    R. Caussé, J. Kergomard, X. Lurton: Input impedance of brass musical instruments – Comparison between experiment and numerical models, J. Acoust. Soc. Am. 75(1), 241–254 (1984)CrossRefGoogle Scholar
  28. 19.28
    D.H. Keefe: Acoustical wave propagation in cylindrical ducts: Transmission line parameter approximations for isothermal and nonisothermal boundary conditions, J. Acoust. Soc. Am. 75(1), 58–62 (1984)CrossRefGoogle Scholar
  29. 19.29
    J. Kergomard, R. Caussé: Measurement of acoustic impedance using a capillary: An attempt to achieve optimization, J. Acoust. Soc. Am. 79(4), 1129–1140 (1986)CrossRefGoogle Scholar
  30. 19.30
    S. Bilbao, R. Harrison, J. Kergomard, B. Lombard, C. Vergez: Passive models of wave propagation in acoustic tubes, J. Acoust. Soc. Am. 138, 555–558 (2015)CrossRefGoogle Scholar
  31. 19.31
    S. Bilbao, R. Harrison: Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross-section, J. Acoust. Soc. Am. 140, 728–740 (2016)CrossRefGoogle Scholar
  32. 19.32
    T. Hélie, R. Mignot, D. Matignon: Waveguide modeling of lossy flared acoustic pipes: Derivation of a Kelly–Lochbaum structure for real-time simulations. In: IEEE Workshop Appl. Signal Process. Audio Acoust., New Paltz (2007) pp. 267–270Google Scholar
  33. 19.33
    R. Mignot, T. Hélie, D. Matignon: Digital waveguide modeling for wind instruments: Building a state-space representation based on Webster–Lokshin model, IEEE Trans. Audio Speech Lang. Process. 18(4), 843–854 (2010)CrossRefGoogle Scholar
  34. 19.34
    O.V. Rudenko, S.I. Soluyan: Theoretical Foundations of Nonlinear Acoustics (Consultants Bureau, New York 1977)CrossRefGoogle Scholar
  35. 19.35
    S. Adachi, M. Sato: Time-domain simulation of sound production in the brass instrument, J. Acoust. Soc. Am. 97(6), 3850–3861 (1995)CrossRefGoogle Scholar
  36. 19.36
    S. Adachi, M. Sato: Trumpet sound simulation using a two-dimensional lip vibration model, J. Acoust. Soc. Am. 99(2), 1200–1209 (1996)CrossRefGoogle Scholar
  37. 19.37
    H. Levine, J. Schwinger: On the radiation of sound from an unflanged circular pipe, Phys. Rev. 73(4), 383–406 (1948)MathSciNetCrossRefGoogle Scholar
  38. 19.38
    R. Harrison, S. Bilbao, J. Perry, T. Wishart: An environment for physical modeling of articulated brass instruments, Comput. Music J. 39(4), 80–95 (2015)CrossRefGoogle Scholar
  39. 19.39
    R. Harrison-Harsley: Physical Modelling of Brass Instruments Using Finite-Difference Time-Domain Methods, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2017)Google Scholar
  40. 19.40
    J.O. Smith III: Efficient simulation of the reed-bore and bow-string mechanisms. In: Proc. Int. Comput. Music Conf., The Hague (1986) pp. 275–280Google Scholar
  41. 19.41
    T. Hélie: Unidimensional models of acoustic propagation in axisymmetric waveguides, J. Acoust. Soc. Am. 114(5), 2633–2647 (2003)CrossRefGoogle Scholar
  42. 19.42
    H. Brezis: Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York 2011)zbMATHGoogle Scholar
  43. 19.43
    J. Conway, N.J.A. Sloane: Sphere Packings, Lattices and Groups (Springer, New York 1988)CrossRefGoogle Scholar
  44. 19.44
    D. Botteldooren: Finite-difference time-domain simulation of low-frequency room acoustic problems, J. Acoust. Soc. Am. 98, 3302–3308 (1995)CrossRefGoogle Scholar
  45. 19.45
    J. Botts, L. Savioja: Integrating finite difference schemes for scalar and vector wave equations. In: IEEE-ICASSP, Vancouver (2013) pp. 171–175Google Scholar
  46. 19.46
    S. Bilbao: Modeling of complex geometries and boundary conditions in finite difference–finite volume time domain room acoustics simulation, IEEE Trans. Audio Speech Lang. Process. 21(7), 1524–1533 (2013)CrossRefGoogle Scholar
  47. 19.47
    S. Bilbao, B. Hamilton, J. Botts, L. Savioja: Finite volume time domain room acoustics simulation under general impedance boundary conditions, IEEE Trans. Audio Speech Lang. Process. 24(1), 161–173 (2016)CrossRefGoogle Scholar
  48. 19.48
    G.D. Smith: Numerical Solution of Partial Differential Equations: With Exercises and Worked Solutions (Oxford Univ. Press, Oxford 1965)zbMATHGoogle Scholar
  49. 19.49
    W.F. Spotz, G.F. Carey: A high-order compact formulation for the 3-D Poisson equation, Numer. Methods Partial Differ. Equ. 12(2), 235–243 (1996)MathSciNetCrossRefGoogle Scholar
  50. 19.50
    B. Hamilton, S. Bilbao, C.J. Webb: Revisiting implicit finite difference schemes for 3-D room acoustics simulations on GPU. In: DAFx (Univ. of Erlangen, Erlangen 2014)Google Scholar
  51. 19.51
    B. Hamilton: Finite Difference and Finite Volume Methods for Wave-Based Modelling of Room Acoustics, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2016)Google Scholar
  52. 19.52
    A. Love: The small free vibrations and deformation of a thin elastic shell, Philos. Trans. R. Soc. Lond. A 179, 491–546 (1888)CrossRefGoogle Scholar
  53. 19.53
    E. Reissner: The effect of transverse shear deformation on the bending of elastic plates, J. Appl. Mech. 12, 69–77 (1945)MathSciNetzbMATHGoogle Scholar
  54. 19.54
    R. Mindlin: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates, J. Appl. Mech. 18, 31–38 (1951)zbMATHGoogle Scholar
  55. 19.55
    A. Chaigne, C. Lambourg: Time-domain simulation of damped impacted plates I. Theory and experiments, J. Acoust. Soc. Am. 109(4), 1422–1432 (2001)CrossRefGoogle Scholar
  56. 19.56
    K. Arcas, A. Chaigne: On the quality of plate reverberation, Appl. Acoust. 71(2), 147–156 (2010)CrossRefGoogle Scholar
  57. 19.57
    E. Jansson: Acoustics for Violin and Guitar Makers (Department of Speech, Music and Hearing, Stockholm 2002)Google Scholar
  58. 19.58
    N. Giordano: Simple model of a piano soundboard, J. Acoust. Soc. Am. 102(2), 1159–1168 (1997)MathSciNetCrossRefGoogle Scholar
  59. 19.59
    A. Chaigne, C. Touzé, O. Thomas: Nonlinear vibrations and chaos in gongs and cymbals, Acoust. Sci. Technol. 26(5), 403–409 (2005)CrossRefGoogle Scholar
  60. 19.60
    A.H. Nayfeh, D.T. Mook: Nonlinear Oscillations (Wiley, New York 1979)zbMATHGoogle Scholar
  61. 19.61
    K.-J. Bathe: Finite Element Procedures (Prentice Hall, Upper Saddle River 1996)zbMATHGoogle Scholar
  62. 19.62
    M.J. Elejabarrieta, A. Ezcurra, C. Santamaria: Vibrational behaviour of the guitar soundboard analysed by the finite element method, Acta Acust. united Acust. 87(1), 128–136 (2001)Google Scholar
  63. 19.63
    J. Berthaut, M.N. Ichchou, L. Jezequel: Piano soundboard: Structural behavior, numerical and experimental study in the modal range, Appl. Acoust. 64(11), 1113–1136 (2003)CrossRefGoogle Scholar
  64. 19.64
    S.A. Van Duyne: Digital Filter Applications to Modeling Wave Propagation in Springs, Strings, Membranes and Acoustical Space, Ph.D. Thesis (Center for Computer Research in Music and Acoustic, Stanford Univ., Stanford 2007)Google Scholar
  65. 19.65
    C. Camier, C. Touzé, O. Thomas: Non-linear vibrations of imperfect free-edge circular plates and shells, Eur. J. Mech. A 28(3), 500–515 (2009)CrossRefGoogle Scholar
  66. 19.66
    M. Ducceschi, C. Touzé, S. Bilbao, C.J. Webb: Nonlinear dynamics of rectangular plates: Investigation of modal interaction in free and forced vibrations, Acta Mechanica 225(1), 213–232 (2014)MathSciNetCrossRefGoogle Scholar
  67. 19.67
    C. Lambourg, A. Chaigne, D. Matignon: Time-domain simulation of damped impacted plates. II. Numerical model and results, J. Acoust. Soc. Am. 109(4), 1433–1447 (2001)CrossRefGoogle Scholar
  68. 19.68
    S. Bilbao: A digital plate reverberation algorithm, J. Audio Eng. Soc. 55(3), 135–144 (2007)MathSciNetGoogle Scholar
  69. 19.69
    S. Bilbao: Percussion synthesis based on models of nonlinear shell vibration, IEEE Trans. Audio Speech Lang. Process. 18(4), 872–880 (2010)CrossRefGoogle Scholar
  70. 19.70
    S. Timoshenko, S. Woinowsky-Krieger: Theory of Plates and Shells, Vol. 2 (McGraw-Hill, New York 1959)zbMATHGoogle Scholar
  71. 19.71
    O. Thomas, S. Bilbao: Geometrically nonlinear flexural vibrations of plates: In-plane boundary conditions and some symmetry properties, J. Sound Vib. 315(3), 569–590 (2008)CrossRefGoogle Scholar
  72. 19.72
    S. Bilbao, L. Savioja, J.O. Smith III: Parametrized finite difference schemes for plates: Stability, the reduction of directional dispersion and frequency warping, IEEE Trans. Audio Speech Lang. Process. 15(4), 1488–1495 (2007)CrossRefGoogle Scholar
  73. 19.73
    A. Torin: Percussion Instrument Modelling In 3D: Sound Synthesis Through Time Domain Numerical Simulation, PhD Thesis (Acoustics and Audio Group, University of Edinburgh, Edinburgh 2015)Google Scholar
  74. 19.74
    S. Bilbao, J.O. Smith III: Energy conserving finite difference schemes for nonlinear strings, Acustica 91, 299–311 (2005)Google Scholar
  75. 19.75
    H. Conklin: Piano strings and phantom partials, J. Acoust. Soc. Am. 102, 659 (1997)CrossRefGoogle Scholar
  76. 19.76
    S. Bilbao: Conservative numerical methods for nonlinear strings, J. Acoust. Soc. Am. 118(5), 3316–3327 (2005)CrossRefGoogle Scholar
  77. 19.77
    J. Chabassier: Modeling and Numerical Simulation of the Piano Through Physical Modeling, Ph.D. Thesis (Ecole Polytechnique, Paris 2012)Google Scholar
  78. 19.78
    S. Bilbao: A family of conservative finite difference schemes for the dynamical von Karman plate equations, Numer. Methods Partial Differ. Equ. 24(1), 193–216 (2008)MathSciNetCrossRefGoogle Scholar
  79. 19.79
    T. Rossing, N. Fletcher: Nonlinear vibrations in plates and gongs, J. Acoust. Soc. Am. 73(1), 345–351 (1983)CrossRefGoogle Scholar
  80. 19.80
    C. Vyasarayani, S. Birkett, J. McPhee: Modeling the dynamics of a vibrating string with a finite distributed unilateral constraint: Application to the sitar, J. Acoust. Soc. Am. 125(6), 3673–3682 (2010)CrossRefGoogle Scholar
  81. 19.81
    S. Bilbao, A. Torin: Numerical modeling and sound synthesis for articulated string/fretboard interactions, J. Audio Eng. Soc. 63(5), 336–347 (2015)CrossRefGoogle Scholar
  82. 19.82
    S. Bilbao, A. Torin, V. Chatziioannou: Numerical modeling of collisions in musical instruments, Acta Acust. united Acust. 101(1), 155–173 (2015)CrossRefGoogle Scholar
  83. 19.83
    A. Hirschberg, J. Gilbert, R. Msallam, A. Wijnands: Shock waves in trombones, J. Acoust. Soc. Am. 99(3), 1754–1758 (1996)CrossRefGoogle Scholar
  84. 19.84
    G. Sod: A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws, J. Comput. Phys. 27(1), 1–31 (1978)MathSciNetCrossRefGoogle Scholar
  85. 19.85
    R. Leveque: Finite Volume Methods for Hyperbolic Problems (Cambridge University Press, Cambridge 2002)CrossRefGoogle Scholar
  86. 19.86
    B. Lombard, D. Matignon, Y. Le Gorrec: A fractional Burgers equation arising innonlinear acoustics: Theory and numerics. In: Proc. 9th IFAC Symp. Nonlinear Contr. Syst., Toulouse (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  • Stefan Bilbao
    • 1
    Email author
  • Brian Hamilton
    • 1
  • Reginald Harrison
    • 1
  • Alberto Torin
    • 1
  1. 1.Acoustics and Audio GroupUniversity of EdinburghEdinburghUK

Personalised recommendations