Skip to main content

Convolution, Fourier Analysis, Cross-Correlation and Their Interrelationship

  • Chapter
Springer Handbook of Systematic Musicology

Part of the book series: Springer Handbooks ((SHB))

  • 5274 Accesses

Abstract

The scope of this chapter is to derive and explain three fundamental concepts of acoustical signal analysis and synthesis: convolution, Fourier transformation, and cross-correlation. Convolution is an important process in acoustics to determine how a signal is transformed by an acoustical system that can be described through an impulse response, a room, for example. Fourier analysis enables us to analyze a signal's properties at different frequencies. This method is then extended to Fourier transformation to convert signals from the time domain to the frequency domain and vice versa. Further, the method of cross-correlation is introduced by extending the orthogonality relations for trigonometric functions that were used to derive Fourier analysis. The cross-correlation method is a fundamental concept to compare two signals. We will use this method to extract the impulse response of a room by comparing a signal measured with a microphone after being transformed by a room with the original, measurement signal emitted into the room using a loudspeaker. Based on this and other examples, the mathematical relationships between convolution, Fourier transformation, and correlation are explained to facilitate deeper understanding of these fundamental concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DFT:

discrete Fourier transformation

FFT:

fast Fourier transform

LTI:

linear time-invariant

References

  1. J. d’Alembert: Recherches sur Differens Points Importans du Systême du Monde (Researches on Different Important Points of the System of the World), Vol. 1. (Chez David l’aîné, Paris 1754)

    Google Scholar 

  2. P.-S. Laplace: Mémoires de l’Académie Royale des Sciences de Paris in 1781 (Gautrier-Villars et Fils, Paris 1781)

    Google Scholar 

  3. A. Hald: History of Mathematical Statistics from 1750 to 1930 (Wiley, New York 1998)

    MATH  Google Scholar 

  4. A. Dominguez: A history of the convolution operation (Retrospectroscope), IEEE Pulse 6(1), 38–49 (2015)

    Article  MathSciNet  Google Scholar 

  5. G. Doetsch: Die Integrodifferentialgleichungen vom Faltungstypus, Math. Ann. 89, 192–207 (1923)

    Article  MathSciNet  Google Scholar 

  6. P.S. Single, D.S. McGrath: Implementation of a 32768-Tap FIR filter using real-time fast convolution. In: Proc. 87th Convent. Audio Eng. Soc. (1989), Preprint 2830

    Google Scholar 

  7. J. Fourier: Théorie Analytique de la Chaleur (The Analytic Theory of Heat) (Firmin-Didot père et fils, Paris 1822)

    MATH  Google Scholar 

  8. A.V. Oppenheim, R.W. Schafer: Digital Signal Processing (Prentice Hall, Englewood Cliffs, New York 1975)

    MATH  Google Scholar 

  9. A. Bravais: Analyse mathématique sur les probabilités des erreurs de situation d’un point (Mathematical analysis of the probabilities of errors in a point’s location), Mém. present. divers savants Acad. Sci. Inst. Fr., Sci. Math. Phys. 9, 255–332 (1846)

    Google Scholar 

  10. F. Galton: Co-relations and their measurement, chiefly from anthropometric data, Proc. R. Soc. Lond. 45, 135–145 (1888)

    Article  Google Scholar 

  11. K. Pearson: Regression, heredity, and panmixia, Philos. Trans. R. Soc. Lond. 187, 253–318 (1896)

    Article  Google Scholar 

  12. J.M. Stanton: Galton, Pearson, and the Peas: A brief history of linear regression for statistics instructors, J. Stat. Educ. 9(3) (2001), online, last accessed 02/10/2016

    Google Scholar 

  13. N. Wiener: Generalized harmonic analysis, Acta Math 55(1), 117–258 (1930)

    Article  MathSciNet  Google Scholar 

  14. G.-B. Stan, J.-J. Embrechts, D. Archambeau: Comparison of different impulse response measurement techniques, J. Audio Eng. Soc. 50(4), 249–262 (2002)

    Google Scholar 

Download references

Acknowledgements

I would like to thank my mentor Jens Blauert for teaching me the fundamentals of auditory signal processing. I learned the unique derivation of the convolution presented in this chapter when taking Jens' communication acoustics class in 1996. Rolf Walter at the University of Dortmund introduced me to the fundamentals of Fourier analysis and synthesis. Torben M. Pastore and Nikhil Deshpande were of great help proof-reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Braasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Braasch, J. (2018). Convolution, Fourier Analysis, Cross-Correlation and Their Interrelationship. In: Bader, R. (eds) Springer Handbook of Systematic Musicology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55004-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55004-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55002-1

  • Online ISBN: 978-3-662-55004-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics