Delay-Lines and Digital Waveguides

  • Gary ScavoneEmail author
Part of the Springer Handbooks book series (SHB)


A digital delay line is a particular type of finite impulse response (FIR ) filter that has many useful applications in audio signal processing. Simply put, signals that are input to a delay line reappear at the output after a specified time period (in samples). Delay lines are often implemented to support delay times that can vary dynamically. As well, delay times corresponding to noninteger sample lengths can be approximated.

Time delay of signals is fundamental to signal processing systems. In this chapter, we focus on applications in digital audio signal processing and in particular, the modeling of wave propagation in air and in strings. The fundamentals of delay lines will be introduced and their implementation detailed, including common fractional-delay filtering techniques. Feedforward and feedback comb filters are simple signal processing structures built with delay lines and they exhibit characteristics that not only make them interesting for delay-based audio effects algorithms, but also as simple models of acoustic wave propagation. Finally, the use of delay lines to simulate wave propagation in one-dimensional waveguides will be introduced with a focus on the synthesis of plucked string instrument sounds.








finite impulse response


  1. 13.1
    T.I. Laakso, V. Välimäki, M. Karjalainen, U.K. Laine: Splitting the unit delay – Tools for fractional delay filter design, IEEE Signal Process. Mag. 13, 30–60 (1996)CrossRefGoogle Scholar
  2. 13.2
    D.A. Jaffe, J.O. Smith: Extensions of the Karplus-Strong plucked string algorithm, Comput. Music J. 7(2), 56–69 (1983)CrossRefGoogle Scholar
  3. 13.3
    M.R. Schroeder: Natural-sounding artificial reverberation, J. Audio Eng. Soc. 10(3), 219–223 (1962)Google Scholar
  4. 13.4
    M.R. Schroeder: Digital simulation of sound transmission in reverberant spaces (Part 1), J. Acoust. Soc. Ame. 47(2), 424–431 (1970)CrossRefGoogle Scholar
  5. 13.5
    J.A. Moorer: About this reverberation business, Compt. Music J. 3(2), 13–18 (1979)CrossRefGoogle Scholar
  6. 13.6
    J. Stautner, M. Puckette: Designing multichannel reverberators, Compt. Music J. 6(1), 52–65 (1982)CrossRefGoogle Scholar
  7. 13.7
    J.M. Jot: An analysis/synthesis approach to real-time artificial reverberation. In: Proc. Int. Conf. Acoust., Speech, Signal Process., San Francisco (1992) pp. II.221–II.224Google Scholar
  8. 13.8
    J.O. Smith: A new approach to digital reverberation using closed waveguide networks. In: Proc. Int. Comput. Music Conf., Vancouver (1985) pp. 47–53Google Scholar
  9. 13.9
    J.O. Smith: Physical modeling using digital waveguides, Comput. Music J. 16(4), 74–91 (1992)CrossRefGoogle Scholar
  10. 13.10
    J.O. Smith: Efficient synthesis of stringed musical instruments. In: Proc. Int. Comput. Music Conf., Tokyo (1993) pp. 64–71Google Scholar
  11. 13.11
    J.O. Smith: Physical modeling synthesis update, Comput. Music J. 20(2), 44–56 (1996)CrossRefGoogle Scholar
  12. 13.12
    M. Karjalainen, J.O. Smith: Body modeling techniques for string instrument synthesis. In: Proc. Int. Comput. Music Conf., Hong Kong (1996) pp. 232–239Google Scholar
  13. 13.13
    V. Välimäki, J. Huopaniemi, M. Karjalainen, Z. Jánosy: Physical modeling of plucked string instruments with application to real-time sound synthesis, J. Audio Eng. Soc. 44, 331–353 (1996)Google Scholar
  14. 13.14
    J.O. Smith: Principles of digital waveguide models of musical instruments. In: Applications of Digital Signal Processing to Audio and Acoustics, ed. by M. Kahrs, K. Brandenburg (Kluwer, Boston, Dordrecht, London 1998) pp. 417–466Google Scholar
  15. 13.15
    M. Karjalainen, V. Välimäki, T. Tolonen: Plucked string models: From the Karplus-Strong algorithm to digital waveguides and beyond, Comput. Music J. 22(3), 17–32 (1998)CrossRefGoogle Scholar
  16. 13.16
    V. Välimäki, J. Pakarinen, C. Erkhut, M. Karjalainen: Discrete-time modelling of musical instruments, Rep. Prog. Phys. 69(1), 1–78 (2005)CrossRefGoogle Scholar
  17. 13.17
    J.O. Smith: Physical Audio Signal Processing (W3K Publishing, Denver 2010)Google Scholar
  18. 13.18
    V. Välimäki, M. Karjalainen, T.I. Laakso: Modeling of woodwind bores with finger holes. In: Proc. Int. Comput. Music Conf., Tokyo (1993) pp. 32–39Google Scholar
  19. 13.19
    V. Välimäki, M. Karjalainen: Digital waveguide modeling of wind instrument bores constructed of truncated cones. In: Proc. Int. Comput. Music Conf., Århus (1994) pp. 423–430Google Scholar
  20. 13.20
    G.P. Scavone, P.R. Cook: Real-time computer modeling of woodwind instruments. In: Int. Symp. Musical Acoust., Leavenworth (1998) pp. 197–202Google Scholar
  21. 13.21
    M. van Walstijn, G.P. Scavone: The wave digital tonehole model. In: Proc. Int. Comput. Music Conf., Berlin (2000) pp. 465–468Google Scholar
  22. 13.22
    G.P. Scavone: Time-domain synthesis of conical bore instrument sounds. In: Proc. Int. Comput. Music Conf., Göteborg (2002) pp. 9–15Google Scholar
  23. 13.23
    M. van Walstijn, M. Campbell: Discrete-time modeling of woodwind instrument bores using wave variables, J. Acoust. Soc. Am. 113(1), 575–585 (2003)CrossRefGoogle Scholar
  24. 13.24
    G.P. Scavone, J.O. Smith: A stable acoustic impedance model of the clarinet using digital waveguides. In: Proc. Int. Conf. Digit. Audio Effects (DAFx-06), Montreal (2006) pp. 89–94Google Scholar
  25. 13.25
    K. Karplus, A. Strong: Digital synthesis of plucked-string and drum timbres, Comput. Music J. 7(2), 43–55 (1983)CrossRefGoogle Scholar
  26. 13.26
    J. Abel, V. Välimäki, J.O. Smith: Robust, efficient design of allpass filters for dispersive string sound synthesis, IEEE Signal Process. Lett. 17(4), 406–409 (2010)CrossRefGoogle Scholar
  27. 13.27
    G. Weinreich: Coupled piano strings, J. Acoust. Soc. Amer. 62, 1474–1484 (1977)CrossRefGoogle Scholar
  28. 13.28
    B. Bank, M. Karjalainen: Passive admittance matrix modeling for guitar synthesis. In: Proc. 2010 Int. Conf. Digital Audio Effects (DAFx-10), Graz (2010)Google Scholar
  29. 13.29
    M.E. McIntyre, J. Woodhouse: On the fundamentals of bowed-string dynamics, Acustica 43(2), 93–108 (1979)zbMATHGoogle Scholar
  30. 13.30
    J.O. Smith: Efficient simulation of the reed-bore and bow-string mechanisms. In: Proc. 1986 Int. Comput. Music Conf., The Hague (1986) pp. 275–280Google Scholar
  31. 13.31
    S. Van Duyne, J.O. Smith: Physical modeling with the 2-D digital waveguide mesh. In: Proc. 1993 Int. Comput. Music Conf., Tokyo (1993) pp. 40–47Google Scholar
  32. 13.32
    S. Van Duyne, J.O. Smith: The 3D tetrahedral digital waveguide mesh with musical applications. In: Proc. 1996 Int. Comput. Music Conf., Hong Kong (1996) pp. 411–418Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Music Research, Schulich School of MusicMcGill UniversityMontrealCanada

Personalised recommendations