Advertisement

Music Studio Technology

  • Robert Mores
Part of the Springer Handbooks book series (SHB)

Abstract

Music studio technology is reviewed with respect to the different tasks involved in recordings, broadcasts, and live concerts. The chapter covers microphones and microphone arrangements, signal preconditioning and sound effects, and matters of digitalization. It also covers equipment technology such as mixing consoles, synthesizers and sequencers. Historical and contemporary audio formats are reviewed including the issues of restoration. Practical matters such as signals, connectors, cables and grounding problems are addressed due to their significance to sound quality. The general trend towards audio networks is shown. Finally, speakers, reference listening and reinforcement systems are outlined, including some of the multidimensional formats.

3-D

three-dimensional

AAF

advanced authoring format

ADM

adaptive delta modulation

ADPCM

adaptive differential pulse code modulation

ADU

analog-to-digital unit

AIFF

audio interchange file format

AoIP

audio over IP

ARQ

automatic repeat request

ASBF

structured audio sample bank format

AVI

audio video interleaved

AWB

audio workbench

BEM

boundary element method

BER

bit error rate

BPM

beats per minute

BWF

broadcast wave format

DA

distribution amplifier

DASH

digital audio stationary head

DAT

digital audio tape

DAW

digital audio workstation

DCC

digital compact casette

DCT

discrete cosine transformation

DM

delta modulation

DMIF

delivery multimedia integration framework

DML

distributed-mode loudspeakers

DPCM

differential pulse code modulation

DRM

digital rights management

DTS

digital theatre system

DVB

digital video broadcast

EMI

electromagnetic interference

FDDI

fiber-distributed digital interface

FDM

finite-difference method

FEC

forward-error correction

FEM

finite element method

FLAC

free lossless audio codec

FT

Fourier transform

FTP

file transfer protocol

HDMI

high-definition multimedia interface

HOA

higher-order ambisonics

HRTF

head-related transfer function

IFF

interchange file format

IID

interaural intensity difference

ILD

interaural level difference

INA

Ideale Nierenanordnung

IP

internet protocol

ITD

interaural time difference

LA

line array

LFE

low-frequency effect

LP

linear prediction

MAC

medium access frames

MADI

multichannel audio digital interface

MIDI

musical instrument digital interface

MXF

material exchange format

NFS

network file system

OCT

optimized cardioid triangle

OHCI

open host controller interface

OMF

open media framework interchange

OSI

open standard interconnection

PA

public address

PCM

pulse code modulation

POF

polymer optical fiber

PPM

peak program meter

QEF

quasi-error-free

QoS

quality of service

RIFF

resource interchange file format

RMS

root mean square

RTCP

real-time transport control protocol

RTP

real-time protocol

SACD

super audio CD

SAOL

structured audio orchestra language

SBR

spectral band replication

SDI

serial digital interface

SDM

sigma-delta modulation

SDS

sample dump standard

SMTP

simple mail transfer protocol

SPL

sound pressure level

STFT

short-term Fourier transform/short-time Fourier transform

TCP

transmission control protocol

THD

total harmonic distortion

UDP

user data protocol

UHF

ultra high frequency

VCO

voltage-controlled oscillator

VoIP

voice over IP

VU

volume unit meter

WAN

wide-area network

WCLK

word clock

WFS

wave field synthesis

WMA

Windows media audio

XMF

extensible music format

References

  1. 12.1
    M. Williams: Microphone Arrays for Stereo and Multichannel Sound Recording, Vol. 1 (Editrice Il Rostro, Segrate 2004)Google Scholar
  2. 12.2
    U. Herrmann, V. Henkels, D. Braun: Comparison of 5 surround microphone methods. In: 20. Tonmeistertagung (Bildungswerk des Verbandes Deutscher Tonmeister, Verlag K. G. Saur, München 1999) pp. 508–517Google Scholar
  3. 12.3
    M. Williams, G. Le Dû: Microphone array analysis for multichannel sound recording. In: 107th AES Convention Preprint 4997 (1999)Google Scholar
  4. 12.4
    G. Theile: Natural 5.1 music recording based on psychoacoustic principals. In: AES 19th Int. Conf.: Surround Sound – Techniques, Technol. Percept., Elmenau (2001)Google Scholar
  5. 12.5
    M.A. Gerzon: The design of precisely coincident microphone arrays for stereo and surround sound. In: 50th Convention of the Audio Engineering Society (Mathematical Institute, University of Oxford, Oxford 1975), pp. Preprint L–20Google Scholar
  6. 12.6
    M. Vorländer: Auralization: Fundamentals of Acoustics, Modelling, Simulation, Algorithms and Acoustic Virtual Reality (Springer, Berlin 2008) pp. 1–335Google Scholar
  7. 12.7
    R. Bader: Reconstruction of radiating soundfields using minimum energy method, J. Acoust. Soc. Am. 127, 300 (2010)CrossRefGoogle Scholar
  8. 12.8
    M.R. Schroeder: Natural sounding artificial reverberation, J. Audio Eng. Soc. 10(3), 219–223 (1962)Google Scholar
  9. 12.9
    W.G. Gardner: Efficient convolution without input-output delay, J. Audio Eng. Soc. 43(3), 127–136 (1995)MathSciNetGoogle Scholar
  10. 12.10
    G. de Poli (Ed.): Representations of Musical Signals. Proc. Int. Workshop, Sorrento 1991) pp. 1–478Google Scholar
  11. 12.11
    CITT G.726, Recommendation: General Aspects of Digital Transmission Systems; Terminal Equipments 40, 32, 24, 16 kbit/s adaptive differential pulse code modulation (ADPCM) (The International Telegraph and Telephone Consultative Committee, Geneva 1990) Google Scholar
  12. 12.12
    DIN EN ISO 226:2006-04 (E): Acoustics – Normal Equal-Loudness-Level Contours (Beuth, Berlin 2006)Google Scholar
  13. 12.13
    EBU – TECH 3306, Technical Specification: MBWF/RF64:An Extended File Format for Audi (European Broadcasting Union, Geneva 2009) Google Scholar
  14. 12.14
    ISO/IEC 11801, International standard: Information Technology – Generic Cabling for Customer Premises, 2nd edn. (International Organization for Standardization, Geneva 2002) Google Scholar
  15. 12.15
    AES3, AES standard for digital audio engineering: Serial transmission format for two-channel linearly represented digital audio data (Audio Engineering Society, New York 2009) Google Scholar
  16. 12.16
    AES10-2008 (r2014): AES Recommended Practice for Digital Audio Engineering – Serial Multichannel Audio Digital Interface (MADI) (Audio Engineering Society, New York 2008Google Scholar
  17. 12.17
    IEEE 1394, IEEE Sandard: IEEE Standard for a High-Performance Serial Bus (Institute of Electrical and Electronics Engineers, Piscataway 2008) Google Scholar
  18. 12.18
    IEEE 1588, IEEE Standard: IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems (Institute of Electrical and Electronics Engineers, Piscataway 2008) Google Scholar
  19. 12.19
    EBU – TECH 3326, Technical Specification: Audio Contribution over IP, Rev. 4 (European Broadcasting Union, Geneva 2014)Google Scholar
  20. 12.20
    EBU – TECH 3329, Tutorial: A Tutorial on Audio Contribution over IP (European Broadcasting Union, Geneva 2008) Google Scholar
  21. 12.21
    ITU-R BS.1284-1, Recommendation: General Methods for the Subjective Assessment of Sound Quality (International Telecommunications Union—Radiocommunication, Geneva 2003) Google Scholar
  22. 12.22
    S. Bech, N. Zacharov: Perceptual Audio Evaluation – Theory, Method and Application (Wiley, Chichester 2006)CrossRefGoogle Scholar
  23. 12.23
    EBU document Tech. 3286: Assessment Methods for the Subjective Evaluation of the Quality of Sound Programme Material – Music (European Broadcasting Union, Geneva 1997) Google Scholar
  24. 12.24
    D. de Vries: Sound reinforcement by wavefield synthesis: adaptation of the synthesis operator to the loudspeaker directivity characteristics, J. Audio Eng. Soc. 44, 1120–1131 (1996)Google Scholar
  25. 12.25
    E.M. Hulsebos, D. de Vries: Parameterization and reproduction of concert hall acoustics measured with a circular microphone array. In: AES Convention, Munich (2002), Paper 5579Google Scholar
  26. 12.26
    K. Hamasaki, T. Nishiguchi, R. Okumura, Y. Nakayama, A. Ando: A 22.2 multichannel sound system for ultra-high-definition TV (UHDTV), SMPTE Motion Imaging J. 117(3), 40–49 (2008)CrossRefGoogle Scholar
  27. 12.27
    ST 2036-2, Standard: Ultra High Definition Television – Audio Characteristics and Audio Channel Mapping for Program Production. (Soc. of Motion Picture and Television Eng., White Plains, New York 2008) Google Scholar
  28. 12.28
    W. Dabringhaus: 2+2+2 – kompatible Nutzung des 5.1 Übertragungsweges für ein System dreidimensionaler Klangwiedergabe klassischer Musik mit drei stereophonen Kanälen, (The 5.1 reproduction chain gives us the chance to be used as a true threedimensional sound-reproduction system for classical music with three pairs of loudspeakrers). In: 21. Tonmeistertagung (MM-Musik-Media-Verlag, Hannover 2000)Google Scholar
  29. 12.29
    V.R. Algazi, R.O. Duda, D.M. Thompson, C. Avendano: The CIPIC HRTF Database. In: Proc. 2001 IEEE Workshop Appl. Signal Process. Audio Electroacoust (Mohonk Mountain House, New Paltz 2001) pp. 99–102Google Scholar
  30. 12.30
    V.R. Algazi, R.O. Duda, R. Duraiswami, N.A. Gumerov, Z. Tang: Approximating the head-related transfer function using simple geometric models of the head and torso, J. Acoust. Soc. Am. 112, 2053 (2002)CrossRefGoogle Scholar
  31. 12.31
    V.C. Raykar, R. Durais, B. Yegnanarayana: Extracting the frequencies of the pinna spectral notches in measured head related impulse responses, J. Acoust. Soc. Am. 118, 364 (2005)CrossRefGoogle Scholar
  32. 12.32
    M. Urban, C. Heil, P. Bauman: Wavefront sculpture technology, J. Audio Eng. Soc. 51(10), 912–932 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2018

Authors and Affiliations

  1. 1.Faculty of Design, Media & InformationUniversity of Applied SciencesHamburgGermany

Personalised recommendations